
Linux x86-64 port

Andi Kleen, SuSE Labs
ak@suse.de

Overview of X86-64 I

 X86 / SSE2 based

 Long mode / Compatibility mode / Legacy mode

 8 additional integer registers (R8-15)

 8 additional SSE2 register (XMM8-15)

 64bit registers with zero extension

Overview of X86-64 II

 RIP relative memory access.

 43bit address space / 48bit in architecture

 Stack always 64bit aligned.

Overview of X86-64 III - System

 Segment bases and limits are ignored -> Segmentation gone.

 FS/GS stay as a kind of address register

 Interrupt stack / interrupt priority support	

 4 level page tables similar to PAE

Overview of X86-64 IV - Things dropped

 16bit segments are gone (support for 16bit programs in wine
gone)

 Task switching dropped

 vm86 dropped (dosemu gone in long mode)

Overview of X86-64 V - Instructions gone.

 These are all single byte instructions.

 Ascii Adjust: AAl, AAD, AAM, AAS

 BCD Adjust: DAA, DAS

 Rarely used bounds checking: INTO, BOUND

 LAHF, SAHF, SALC

 PUSHA, POPA

 PUSH/POP segment register (multibyte equivalents still exists)

 Segment cruft: LDS, LES, JMPF immediate, CALLF immediate, ARPL

New ABI I

 Modern ABI optimized for code size

 Code size comparable to 32bit code.

 register arguments, including stdargs

 Natural alignment everywhere.

 Uses SSE2 registers fully

New ABI II

 Most registers are callee saved to save code space.

 Requires prototypes for floating point

 Non prototyped calls are a bit slower because they must handle
stdargs

 double is always 64bit, only long double uses the x87 FPU stack.

New ABI III

 Stack is always 64bit aligned

 Stack redzone

 No frame pointer; uses unwind tables instead

 dwarf native debugging format

Code models

 Pointers are always 64bit, this just changes how addresses of
linked objects are loaded in the code.

 Small		
 Code/static data limited to 2GB range, references in code RIP relative. Smallest and fastest code. Should be used by
most programs.

 Medium
 Code limited to 2GB, data references full 64 bit.		

 Large		
 Support full 64bit data/code references. Bigger and slower code.

 Kernel
 Negative small model. Exploits wrapping and sign extension in EA calculation for efficient kernel code.

 GCC & binutils

 x86-64 backend based on i386 backend

 SSE2 support implemented

 i386/x86_64 is merged (-m32 and -m64 work both from the same
executable)

 Is stable enough for development

 gcc merged in gcc 3.1; binutils into official binutils tree.

Kernel: New port:

 Based on the i386 port.

 Ambitional port: trying to exploit new features instead of just trying
to get it running.

 Started in August 2000

Kernel: Things removed

 Gone: support for old CPUs

 Gone: APM

 Gone: Lots of old bug workarounds (like F00F)

 Gone: FPU emulation

 Gone: support for non PAE

4K pages

 x86-64 has 4K pages.

 Linux allocator cannot reliable get more than two continuous
pages.

 page table allocation failure is fatal.

 3 level pagetable with 1 page each -> 39 bits.

 8K kernel stacks -> interrupt stacks

Memory management

 Uses similar structures as modern x86 (3 level PAE), with minor
changes.

 Only 3 level of 4 pagetables used by Linux ATM (= 39
bits/process),

 fourth level hidden from generic code.

 Kernel space negative

 User mode positive

 Kernel code mapped to upper part of negative space, for kernel
code model.

Processor Data Area (PDA) I

 Every CPU has an per processor area

 It is always pointed to by %gs when the kernel runs.

 Needed for syscall and for interrupt stacks.

 Saves memory because padding is minimized.

Processor Data Area (PDA) II

 PDA cheaper to access than CPU number indexed arrays.

 Work still needed to put generic data structures into the PDA also.

 Hopefully other architectures will follow.

Split stackframe I

 System call entry is very critical

 Saves only callee clobbered integer registers on normal syscall or
interrupt.

 Program pointer/stack pointer/etc. are saved into PDA	

 Signals/exec/fork/clone/ptrace save full stack frame with special
stubs.

Split stackframe II

 Exceptions save full frame.

 stack frame on most system calls is valid, but many fields are
undefined(including rip)

 Interrupts see interrupt frame and all non callee saved in ptregs
arg.

 	 	

 Not clear if it’s really worth it.

Interrupt stacks I

 Stack limit of two pages (8K) due to VM limitations.

 64bit code needs more stack than 32bit.

 Uses interrupt stacks to stay in limit.

Interrupt stacks II

 Interrupt stacks implemented in software as the hardware
mechanism doesn’t support nested interrupts easily.

 Getting the current process via stack pointer does not work
anymore.

 Uses the PDA for that instead.

 Allows to use cache colouring allocation for task_struct to get
better cache usage in the scheduler.

vsyscalls

 gettimeofday is a very critical system call

 It can be implemented in user context with some kernel support
using the CPU timestamp counters.

 vsyscalls map code into user space at a fixed address

 Can be called with the overhead of a system call.

 Problems with exception handling: needs an unwind table that
has to be supplied by the user

Context switch

 Has to save more registers and they are twice as big (->slower)

 Manages 64bit segment registers lazily, because rdmsr/wrmsr is
slow.

 Lazy FPU context switch.

 More efficient kernel entry saves some overhead again.

IA32 emulation

 Translates system calls and ioctl that pass data structures with
pointers or long.

 Based on previous sparc64/ia64 code.

 Sits as an layer between the 32bit syscall entry (int 0x80) and the
normal kernel calls.

IA32 emulation details

 Shares the same stack frame with 64bit calls

 32bit Syscall instruction not supported.

 A lot of unix system calls can be directly mapped with zero
extension.

 System calls that need sign extended arguments (e.g. lseek)
need to be mapped.

IA32 emulation split

 Currently rather monolithic.

 Most of it portable code and needed by at least 6 architectures.

 Plan to make it generic for 2.5 and move it into subsystems.

 Drivers should translate their own ioctls with register_ioctl

Status

 Kernel works for 32bit and 64bit executables.

 Stable enough for user space development

 Currently based on2.4.7.

People

 Kernel: Andrea Arcangelli, Pavel Machek, Andi Kleen, Karsten
Keil

 Glibc: Andreas Jaeger

 Gcc/Binutils: Jan Hubicka, Bo Thorsen

 GDB: Jiri Smid

 XFree86: Egbert Eich

URLs

 http://www.x86-64.org

 Kernel patches at ftp://ftp.x86-64.org/pub/linux-x86_64/v2.4/

 Getting things via CVS:
 cvs -d :pserver:anoncvs@cvs.x86-64.org:/cvs/Repository login
 Password: anoncvs
 cvs -z4 checkout <module>
 Some module: linux, gcc, binutils, x86-64-ABI, ...

