
Porting Linux to x86-64

Andi Kleen
SuSE Labs
ak@suse.de

Abstract

...
Some implementation details with changes over the

existing i386 port are discussed.

1 Introduction

x86-64 is a new architecture developed by AMD. It is
an extension to the existing IA32 architecture. The
main new features over IA32 are 64bit addresses, 16
64bit integer register and 16 SSE2 registers. This
paper describes the Linux port to this new architec-
ture. The new 64bit kernel is based on the existing
i386 port. It is ambitious in as that it tries to ex-
ploit new features, not just do a minimum port, and
redesigns parts of the i386 port as necessary. The
x86-64 kernel is developed by AND and SuSE as a
free software project.

2 Short overview over the x86-
64 architecture

I will start with a short overview of the x86-64 exten-
sions. This section assumes that the reader has basic
knowledge about IA32, as only changes are explained.
For an introduction about IA32 see [Intel].

x86-64 CPUs support new modes: When they are
in legacy mode they are fully IA32 compatible and
should run all existing operating systems and soft-
ware unchanged. Optionally the operating system
can turn on long mode, which enables 64bit opera-
tion. In the following only long mode is discussed.

Certain unprivileged programs can be run in com-
patibility mode in a special code segment, which al-
lows to execute existing IA32 programs unchanged.
Other programs can run in long mode and exploit all
new features. The kernel and all interrupts run in
long mode.

The main new feature is support for 64bit ad-
dresses, so that more than 4GB of memory can be
directly addressed.All registers and other structures
dealing with addresses have been enlarged to 64bit.
There have been 8 new integer registers added (R8-
R16), so that there is a total of 16 general purpose
64bit registers now. Without address prefix the code
usually defaults to 32bit accesses to registers and
memory, except for the stack which is always 64bit
aligned and jumps. 32bit operations on 64bit reg-
isters do zero extension. 64bit immediates are only
supported by the new movabs instruction.

A new addressing mode, RIP-relative, has been
added which allows to address memory relative to
the current program counter.

x86-64 supports the SSE2 SIMD extensions. 8 new
SSE2 registers (XMM8-XMM15) have been added
over the existing XMM0-XMM7. The x87 register
stack is unchanged.

Some obsolete features of IA32 are gone in long
mode. Some rarely used instructions have been re-
moved to make space for the new 64bit prefixes. Seg-
mentation is mostly gone: segment bases and limits
are ignored in long mode. fs and gs can be still used
as kind of address registers with some limitations and
kernel support. vm86 mode and 16bit segments are
also gone. Automatic task switching is not supported
anymore.

Page size stays at 4KB. Page tables have been ex-



tended to 4 levels to cover the full 48 bit address room
of the first implementations.

For more information see the x86-64 architecture
manual [AMD2000].

3 ABI

As x86-64 has more registers than IA32 and does not
support direct calling of IA32 code it was possible
to design a new modern ABI for it. The basic type
sizes are similar to other 64bit Unix environments:
long and pointers are 64bit, int stays 32bit. All data
types are aligned to their natural 1 size.

The ABI uses register arguments extensively. Upto
6 integer and 9 64bit floating point arguments are
passed in registers, in addition to argument

Structures are passed in registers as possible. Non
prototyped functions have a slight penalty as the
caller needs to initialize an argument count register
to allow argument saving for variable argument sup-
port. Most registers are caller saved to save code
space in callees.

Floating point is by default passed in SSE2 XMM
registers now. This means double are always calcu-
lated in 64bit unlike IA32. The x87 stack with 80bit
precision is only used for long double. The frame
pointer has been replaced by an unwind table. 128
bytes below the stack pointer is reserved for scratch
space to save more space for leaf functions.

Several code models have been defined: small,
medium, large, kernel. Small is the default; while
it allows full 64bit access to the heap and the stack
all code and preinitialized data in the executable is
limited to 4GB, as only RIP relative addressing is
used. It is expected that most programs will run in
small mode. Medium is the same as small, but al-
lows a full 64bit range of preinitialized data, but is
slower and generates larger code. Code is limited to
4GB. Large allows unlimited 2 code and initialized
data, but is even slower than medium. kernel is a
special variant of the small model. It uses negative
addresses to run the kernel with 32bit displacements

1On IA32 64bit long long was not aligned to 64bit
2Unlimited in the 64bit, or rather 40 bit address space, of

the first kernel

and the upper end of the address space. It is used by
the kernel only.

So far the goal of the ABI to save code size is suc-
cessful: gcc using it generates code sizes comparable
to 32bit IA323

For more information on the x86-64 ABI see
[Hubicka2000]

4 Compiler

A basic port of the gcc 3 compiler and binutils to
x86-64 has been done by Jan Hubicka. This includes
implementation of SSE2 support for gcc and full sup-
port for the long mode extensions and the new 64bit
ABI. The compiler and tool chain are stable enough
for kernel compiling and system porting.

5 Kernel

The x86-64 kernel is a new linux port. It was orig-
inally based on the existing i386 architecture code,
but is now independently maintained. The following
discusses the most important changes over the 32bit
i386 kernel and some interesting implementation de-
tails.

6 Memory management

x86 has a 4 level page table. The portable Linux VM
code currently only supports 3 level page tables. The
uppermost level is therefore kept private the archi-
tecture specific code; portable code only sees three
levels.

The page table setup currently supports upto
48bits of address space, the initial Hammer imple-
mentation supports 43bit (8TB). TB). The current
linux port uses only 3 levels of the 4 level page table.
This causes a 1TB limit (40bits) per user process.

The 48th bit of the full virtual space is sign ex-
tended, so there is a negative part of the address
room. In the linux port this negative room is re-
served for the kernel. The kernel is mapped on top

3Not counting the unwind table sizes.

2



Figure 1: x86-64 pagetable

of the negative part while allows the efficient use of
negative sign extended 32bit addresses in the kernel
code. For that the kernel code model of the com-
piler is used. This high mapping is invisible to the
portable VM code which only operates on the low
40bits of the first 3 level page table branch.

The basic structure of the page table is similar to
the 3level PAE mode in modern IA3 CPUs, with all
levels being full 4K pages.

Every entry in the page tables is 64bit wide. This
is similar to the 32bit PAE mode. To avoid races with
other CPUs while updating page table entries all op-
erations on them have to be atomic. In the 64bit ker-
nel this can be conveniently done using 64bit memory
operations, while i386 needs to use CMPXCHG8.

7 System calls

The kernel entry code was completely rewritten com-
pared to i386. For system calls it uses the SYSCALL
and SYSRET instructions which run much faster
than the int0x80 software interrupt used on for
linux/i386 syscalls. They required some changes to
use and made the code more complicated though.

One restriction is that they are not recursive; SYS-
RET always turns on user mode. In kernel system
calls like kernel thread() needed to be handled by
special entry points, complicating the code.

SYSCALL has a slight bootstrap problem. It
doesn’t do much setup for the ring0 kernel environ-
ment and the syscall kernel entry point is entered
with an undefined stack pointer. To bootstrap the
kernel stack itself it uses the new SWAPGS instruc-
tion to initialise the GS segment register with the
PDA of the current CPU. Using the PDA the user
old stack pointer is saved and the kernel stack pointer
of the current process is then initialized.

Another problem was that SYSRET receives its
arguments in predefined registers, which are always
clobbered. This has the side effect that it is impos-
sible to return or enter programs from signals via
SYSRET, because in this case all registers need to

be restored and the clobbered register would corrupt
the user context. A special return path that uses the
slower IRET command for jumping back is used in
this case.

Signal handling is very similar to i386 with minor
modernizations. The C Library is required now to
set a restorer function that calls sigreturn when the
signal handler has finished; stack trampolines have
been removed.

Time related system calls (gettimeofday particu-
larly) are very often called in many applications.
They can be also implemented in user space by using
the CPU cycle counter with the help of some shared
variables maintained by the kernel. To isolate this
code from user space vsyscalls have been added by
Andrea Arcangelli. A special memory area including
some code and some variables is mapped into every
user process by the kernel. It can be directly called by
the user via a special offset table on a magic address,
allowing very fast time access. Problems of this ap-
proach is the signal and exception handling and the
handling of the unwind table in case an signal occurs
while a vsyscall runs.

8 PDA

To solve the SYSCALL supervisor stack bootstrap
problem described above a data structure called the
Per Processor Area (PDA) is used. A pointer to the
PDA is stored on bootup in a hidden register of the
CPU using the KERNEL GS BASE MSR. Each time
the kernel is entered from user space via exceptions,
system calls or interrupts the SWAPGS instruction
is executed. It swaps the userland value of the GS
register with the PDA value from the hidden register
and stays there while the kernel runs.

The PDA is currently used to store information for
fast syscall entry, like the kernel stack pointer of the
current task, a pointer to the current task itself and
the old user stack pointer on a system call. It also
some other information.

It is hoped that future linux version will move more
information into a central generic PDA structure that
is used by the architecture independent kernel. As of
Linux 2.4 various subsystems keep their own private

3



arrays padded to cache lines and indexed by CPU
number. Accessing such arrays is costly as the CPU
number has to be first retrieved and then the in-
dex computed and the required cache line padding
to avoid false sharing of data wastes memory. The
PDA offers a faster alternative, at the disadvantage
of being less modular because PDA data structures
have to be maintained in a central include files.

9 Partial stack frame

To speed up interrupts and system calls the entry
code only saves registers that are actually clobbered
by the C code. Some system calls and kernel func-
tions need to see a full register state. These include
for example fork, which has to copy all registers to the
child process, exec, has to restore all registers, signal
handling, which needs to present all registers to the
signal handler and some others. For these functions
special stubs are used to save the full register set.

After a fast system call entry through SYSCALL
the kernel stack frame is partly uninitialized. Some
information like the user program pointer (RIP) and
the user stack pointer (RSP) are saved in the PDA
or in special registers. On other entry points like for
the i386 syscall emulation they are on the normal
stack frame on the kernel stack. To shield C code
from these differences the CPU part of stack frame is
always fixed by a special stub before calling any func-
tion that looks at the kernel stack frame. Afterward
the function ran the PDA is restored from the stack.

10 Kernel stack

On Linux every process and kernel thread has an own
kernel stack. This stack is also used for interrupts
while the process runs.

The linux memory allocator has problems to al-
locate more than two consecutive pages reliably af-
ter some system runtime due to memory fragmenta-
tions. Every process needs a continuous kernel stack
that should be directly mapped for efficiency. x86-64
has like i386 a 4K page size. This limits the ker-
nel stack in practice on i386 and i386 to 8K. This

also helps keeping the per thread overhead of the
most common threads package under Linux, Linux-
Threads, low, which uses an own kernel stack per
thread.

On i386 the 6K available as kernel stack are al-
ready tight. 64bit code needs more stack space than
32bit code because the stack is always 64bit aligned
and its data structures on the stack are bigger. To
avoid stack overflow for nested interrupts the x86-64
port uses a separate per CPU interrupt stack.

The x86-64 architecture supports interrupt stacks
in the architecture. This unfortunately has some
problems with nested interrupts, which are common
in Linux. Instead of the hardware mechanism a more
flexible software stack switching scheme using an in-
terrupt counter in the PDA is used.

For double fault and stack fault exceptions the
hardware interrupt stacks to handle invalid kernel
stack pointers with a oops.

11 Finding yourself

On a machine with multiple CPUs it can be quite
complicated to find the current process. A global
variable cannot be used, as it is CPU local informa-
tion. i386 uses a special trick to solve this problem:
the task structure is always stored at the bottom of
the two aligned kernel stack pages 4 and can be effi-
ciently accessed using an AND operation on the cur-
rent stack pointer.

One disadvantage of this is that the task structures
of all processes end up on the same cache sets for not
fully associative CPU and chipset caches because the
lower 13 bits of their address is always zero. This
can cause cache trashing in the scheduler for some
workloads.

In the 64bit kernel accessing the task structure
through the stack pointer doesn’t work as interrupts
running on the special interrupt stack also need to
access it, for example to maintain the per process
system and user time statistics

On x86-64 the current process counter is stored
into the PDA which is efficiently accessed using the

4That is why i386 can use only 6K of the 8K available from
the two kernel stack pages.

4



GS register. This will also allow to move the task
struct to a separate cache coloring slab cache, work-
ing around the cache problems described above and
giving the 64bit kernel in user contex 8K instead of
6K stack space.

This setup is still experimental. If it turns out in
further tests that 8K stack is not enough for the 64bit
user context kernel code without interrupts then the
port will have to move to a slower non continuous
kernel stack that is remapped virtually continuous
through the MMU but can be bigger.

12 Context switch

The basic context switch of x86-64 is very similar
to the i386 port except that it also saves and re-
store the extended R8-R15 integer registers. The ex-
tended SSE registers are handled transparently by
the FXSAVE instruction.

A special case are the FS and GS registers. They
act kind like two additional address registers which
can be only set by the privileged WRMSR instruction
or a change of the LDT of the current process. They
are for example used by the LinuxThreads package
to store thread local data. Doing the WRMSR on
every context switch is relatively costly so the sched-
uler tries to avoid it if possible. For this a similar
technique to the lazy FPU context switch is used.
When a process calls the special system call to set
64bit GS or FS this switching is turned on, otherwise
it is lazily not done.

The process specific values in the PDA like the
current process stack or the user space stack pointer
stored there are also context switched.

13 IA32 emulation

The 64bit kernel supports IA32 binaries. These run
in a special code segment in the CPU’s compatibility
mode. On system calls and interrupts long mode is
always used.

The i386 system calls use the 32bit i386 ABI, which
is different from the 64bit x86-64 ABI. All indirect
structures containing long and pointers have differ-

ent sizes and offsets, the arguments are passed in
different registers and the system call numbers are
different. To make old 32bit binaries run 64bit ker-
nels have a special translation layer that changes all
parameters to the 64bit ABI and then calls the 64bit
kernel services.

Pointers and integer passed in registers can be used
directly, because the x86-64 architecture always ex-
tends 32bit registers to 64bit. Structures passed in
or out through a pointer often need to be converted.
This is implemented based on previous work for the
sparc64 and IA64. Most system calls and the impor-
tant ioctls are converted, but some subsystems still
need work.

It is currently done in an architecture specific mod-
ule for the x86-64, but it is expected that the 64bit
conversion will be moved to architecture independent
code in 2.5 as it is a common problem.

Legacy mode i386 applications see the full 4GB of
virtual space reachable by 32bit pointers. A 32bit
i386 kernel only gives them part of the 4GB address
space (usually 2GB) as it also needs some address
space of its own. On a 64bit kernel therefore even
32bit applications can use more address space.

14 Status

The kernel, compiler, tool chain work. The kernel
boots and work on simulator and is used for porting
of userland and running programs.

15 Availability

All the code discussed in this paper can be down-
loaded from http://www.x86-64.org. The gcc port
will be part of gcc 3.1. The x86-64 toolchain is part
of the standard GNU binutils sources. Gdb and glibc
ports are worked on and they are available in the pub-
lic CVS repository at cvs.x86-64.org. The kernel code
is currently maintained in CVS there also and will be
eventually merged into the official kernel source.

5



16 References

References

[Hubicka2000] Hubicka Jan, Jaeger Andreas,
Mitchell Mark. System V Application Binary
Interface
x86-64 Architecture Processor Supplement
Living document. http://www.x86-64.org/

[AMD2000] AMD The AMD x86-64 architecture pro-
grammers overview http://www.x86-64.org/

[Intel] Intel Intel architecture software developers
manual http://developer.intel.com

6


