
Scalability of modern Linux kernels

September 2010

Andi Kleen, Tim Chen

LinuxCon Japan

2
Software and Services Group

Agenda

Presentation is about Linux kernel scalability
On “single image” systems

Not applications or clusters

Presentation is about scalability, not performance

Assumes basic knowledge of multi-threaded
programming

3
Software and Services Group

What is scalability?

More CPU cores added to the system:
System handles more operations

More memory added to the system
System runs faster

More threads running on a system to use all CPUs:
System does more useful work

4
Software and Services Group

The need for software scalability

These are standard commercial servers, not super computers

20 40 60 80 100 120 140

Logical CPUs in 2010 x86 expandable servers

Logical CPus

8S server

4S server

4S server
2009

2010

2010

5
Software and Services Group

2 socket server CPU trends

Scalability is not just a high-end problem

2S 2008

2S 2009

2S 2010

0 5 10 15 20 25

Dual Socket logical CPUs

6
Software and Services Group

Memory size trends

4S 2009 server

4S 2010 server

8Socket 2010

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Maximum memory scalable x86 server (TB)

Memory size scalability is important too
1TB systems available for less than 50000 EUR today

7
Software and Services Group

Some subsystems (incomplete)

8
Software and Services Group

So does the Linux kernel scale?

Yes it does!

It runs on the largest HPC systems deployed today
Core of the system is extremely scalable

But actual results depends on the workload

Continuous improvements needed to get better

9
Software and Services Group

To how many CPUs does it scale?

It depends how you use it

There is no single number

Depends on: workload, hardware

10
Software and Services Group

Kernel scalability crash course crash course

 Kernel is a big library essentially

No big data sets, but a lot of parallel operations
Provides services to application

Key is accessing shared data structures in parallel

Needs fine-grained locking

11
Software and Services Group

Scalability disadvantages

More locks is not always faster
Each atomic operation has a cost

Scalability is hard
But we're getting better tools

Scalability makes code more complicated
Trade off against code maintainability
Some changes are not worth doing

12
Software and Services Group

Latencies

Sharing data that changes is costly
This affects locks or reference counts

It's (usually) about inter inter-core latencies
Think of the system as a network

Contention versus lock bouncing

Unfair memory a problem on NUMA

CPU1 CPU2

Data

Requests
cache line
containing

data

Location
with lock

Transfer
takes
time

13
Software and Services Group

Lock data not code

Code locks versus data locks

Modern kernels have few code locks
But still a few critical ones

Reference counts avoid locking
But still atomic operation

14
Software and Services Group

Data Localization

Kernel

Object1 Object2

Thread1 Thread2

CPU1 CPU2

Thread1 Thread2

Object1 Object2

Kernel

CPU1 CPU2

 Good Bad

Objects have locks and other state that would need transferring between CPUs

15
Software and Services Group

Objects

Objects can be
network device
SCSI host
file
address space
socket
...

 Fix: spread workload to multiple objects
Kernel improvements in this area ongoing
But will always be limits

16
Software and Services Group

Case study: global lock: dcache_lock

directory cache caches file names in a hash table

dcache_lock is a global lock that protects the directory cache when we
update changes to dcache (file or directory create, delete)

Not for pure reading!

Use Dbench to emulate multiple clients stressing the file system, each
doing create, delete, read, write for files.

Disclaimer: dbench not a good benchmark in general to optimize for
But serves as a load generator here

Thanks to Tim Chen for the data

17
Software and Services Group

dbench throughput

Workload runs in tmpfs

18
Software and Services Group

dcache_lock overhead

19
Software and Services Group

Improving the dcache

Requires large changes to get rid of the inode/dcache code locks

Problem large code locks protected a lot of different things

Large patchkit available to fix the VFS locking (N.Piggin)

This fixes the dcache_lock and inode_lock

Makes common case faster too due to less reference counting

20
Software and Services Group

File systems

 Data IO is (usually) parallel
Especially when you preallocate

 Often metadata locking in file system per mount point
If a problem use multiple file systems

 Synchronization of writes per file descriptor

 FS performance depends on the application

21
Software and Services Group

Filesystems: ext4

ext4 better than ext3 in scalability
Extents and new algorithms help

Some metadata synchronization, per directory
For data O_DIRECT is best

Journal threads can be a bottleneck
Scalability problem in journal locking fixed recently

22
Software and Services Group

Filesystems: XFS

 XFS more fine grained locking, good at scalability
Can access “allocation groups” in parallel
Good parallelism in a file

Good at large IO, bad at lots of small files (but is improving)

Ongoing improvements

23
Software and Services Group

Filesystems: btrfs

Still rather new and under development

Not much focus on scalability yet

Some locking issues in trees.

24
Software and Services Group

Virtual Memory subsystem

 In general scales reasonably well with different processes

Some problems with free page management inside NUMA nodes
zone->lock can be a problem

Scalability to very large memory sizes still work in progress

But has been done in special setups (HPC, large pages)

25
Software and Services Group

Address spaces

Single locks protect a process address space
mmap_sem protects tree of address space mappings

Problems with parallel page faults, parallel brk/mmap in a
threaded program
All threads hit the single address space

Workaround: do less mmaps/unmaps in application
Such as: tune malloc mapping thresholds

26
Software and Services Group

26

Networking basics

Basic TCP/IP network stack very scalable

No serious locking problems on a global scale

Object locks can be still a problem

27
Software and Services Group

Networking multi-queue

Contention
point on CPU1

Single queue Multi queue

Multi queue development in kernel still ongoing
Currently still needs manual tuning through sysfs
NUMA locality can be critical and needs manual tuning too
Older kernels missing multi queue

Goal: spread network connections to multiple CPUs

28
Software and Services Group

Scheduler scalability

In principle, scalable: major run queues per CPU

Often algorithmic problems, many regressions on workloads

Real time scheduler not scalable on newer kernel
Attempts “global” real time fairness

 Some workarounds possible using cpusets

29
Software and Services Group

Analysis

 System time (is there a problem?)

 Scaling tests with increasing thread counts
 Watching system time

Whole system profilers:
oprofile, perf to analyze kernel behaviour
Often need callgraphs enabled to see lock caller
Profiling can be done on short steady states (1min)

Tracers:
systemtap, ftrace to understand behavior

30
Software and Services Group

Summary

Kernel already scales well today
But work needed to handle more workloads and more cores

Kernel scalability cannot be threated like a black box
Some areas to be avoided on large systems
Application tuning can help today to avoid bottlenecks

31
Software and Services Group

31

Questions?

32
Software and Services Group

Backup

33
Software and Services Group

Kernel scalability history

 2.0 big kernel lock for everything

 2.2 big kernel lock for most of kernel
Interrupts running independently with own locks
First usage on larger systems (16 CPUs)

 2.4 more fine grained locking, still common global locks

 2.6 serious tuning, ongoing
Redesigned subsystems for scalability

multi queue CPU scheduler, multi flow networking, ...
Advanced lock-less tuning (Read-Copy-Update, others)
2.6.37: Big Kernel Lock will be (nearly) gone
A few problematic code locks left

34
Software and Services Group

Read-Copy-Update

Standard lock-less technique for scalability in the kernel
When a lock is too costly

Uses “quiescent periods” to avoid freeing objects in operation

Allows scaling readers lock less at some cost to writers
Helps for workloads that read more oft than writing

Writers generally still need locks

Makes code harder to understand

35
Software and Services Group

Enterprise distributions

 RHEL5
2.6.18 based. Already several years old.
Several known serious scalability issues:

VM, single queue networking

 RHEL6/SLES11-SP1
2.6.32 based
Many improvements, but still a lot of known issues
Base of this presentation

 Consumer distributions are more bleeding edge
Fedora, OpenSUSE, ...
Often scalability regressions, but also improvements

36
Software and Services Group

36

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH
INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL
PROPERTY RIGHT.
Intel may make changes to specifications, product descriptions, and plans at any
time, without notice.

All dates provided are subject to change without notice.

Intel is a trademark of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2010, Intel Corporation. All rights are protected.

37
Software and Services Group

37

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

