Unified error reporting -- A worthy goal?

Andi Kleen, Intel Corporation
Sep 2009

andi@firstfloor.org

errors

O standardized errors
o machine checks
O pCi-express errors

O platform errors

othermal errors
o APEI

[storage errors

o 1O errors
o SMART events

O network errors
o link lost

Orandom errors from drivers
o failover

O software errors
O out of memory

scope

O concentrating on platform hardware errors for now

Othe others possibly later

O but especially software errors are hard
O because there are so many of them

what can you do with errors:

Olog them

O categorize them: display critical ones on the desktop as pop up

O account them, keep statistics
o that many errors on device X in last 24hours

Ctrigger events

O e.g. when more than X errors in 24h call this shell script
O which pages admin, support, triggers failover
O or on a small home servers starts blinking the red LED

> (after all what else is the "LED subsystem" good for?)

audiences

O desktop user

O normal system administrator

O expert

O automated analysis tool

O cluster logging

the desktop user

Odon’t really understand errors
O at best a very high level summary

O should not be unnecessarily concerned
O needs classification, hiding

O graphical interface

O localization

O details should still be available for expert support

normal system administrator

O largely same as desktop user

Oonly really needs high level summary

O should not be unnecessary alarmed

Oreally wants to identify failed part

O graphical interface not as important
O can access log files
O but still useful if not intrusive
O needs reporting to the console

expert / automatic tools

O compatibility crucial

O still want high level summary
o but all the details should be available

O interface to other tools
O might put error from a cluster in central database

so what's wrong with printk?

O difficult to parse

O good errors are verbose

O printk is traditionally for 1-2 lines

O most printks with more information are a mess
O no clear record boundaries

O categorization / severity important

O good errors too verbose for kernel log

what’s good with printk

Oit's the standard
O a lot of people know where to look

Othere are lots of tools to handle it

o including network servers
O but often not very good

O should be used for some high level categorization
o but only those errors that don’t make sense to hide

error metadata

O hardware errors
O ultimative goal is to identify the failed part
o various other information

O various other data useful
o for example dropped event count

O advantage of standard records

o they tend to be reasonably well documented
O SO you can point sophisticated users to documents
O make it easier to process

drich errors are important

O need more data per error
O but don’t display it all by default

why should some errors be hidden?

0some "errors" are normal and expected
O if you ever saw a noisy SMART daemon...
o or ECC memory has a expected corrected error rate

Olet’s call them events
othey’re not really errors

O hardware errors are often bursty

o but individual events in a burst not too interesting
o and on large clusters too much data

Othey’re still useful to see trends

o and should be accounted per component
o don’t belong in normal kernel logs

error processing

0 good error processing needs a lot of state
o and also policy
o GUI interfaces for important errors
O or triggering events

O with triggers when exceeding thresholds

O complex decoding
o identifying components using firmware help
O probably not a good idea in the kernel
O one corner case Is fatal errors where the kernel has to panic
o the kernel needs to do limited decoding at least
O but most errors are not fatal
O need user space for rich error processing

o we already have it with klogd/syslogd
O just too dumb

errors vs event tracing

O normal event tracing aimed at debugging
O so higher overhead is ok

Oerror handling should be always on
O has to work seamlessly in the background

O small footprint crucial

O particularly in memory
oand in dependencies

Orequirements and tools are quite different
o should not be mixed up
O possibly reuse some infrastructure
o but only if it has extremly low overhead

so what's the master plan?

O right now for platform errors (MCE, APEI, PCI-AER)

O keep basic one line errors in printk with an identifier
O but only for serious errors or occasionally output for trends
o strictly rate limited
O possibly extend KERN_* for severity

O but add structured record on second channel
o similar to /dev/imcelog, but ascii in sysfs
o few record types for different types
O using standard formats (e.g. CPER)

master plan user space

O a standard error daemon
o light weight to always run
O has knowledge over basic error types
O accounts events
O hooks for automated action
o simple network protocol interfaces

O extension of mcelog for more errors

o PCI errors, APEI
o more in the future?

mcelog

Machine Check

CE memory error Other CPU arrars MCE decoding
A’/l

CE thesrod Par Socke king Pe DIMM acxouning UC ol Foreofine pggkil Goba lg il
CE Trigger Socket Threshold DIMMThreshold L ocal socket protocol RCThreshold UC Trigger

Socket Trigger DIMM Trigger < Reporting client > RC Trigger

Questions?

Backup

kernel error problems

O some happen from NMI like contexts

O have to use lockless data structures
O can cause problems like livelocks

O requires preallocation, potentially wasting a lot of memory

