
Unified error reporting -- A worthy goal?

Andi Kleen, Intel Corporation
Sep 2009

andi@firstfloor.org

 errors

 standardized errors
 machine checks

 pci-express errors

 platform errors
 thermal errors

 APEI

 storage errors
 IO errors

 SMART events

 network	errors
 link lost

 random errors from drivers
 failover

 software errors
 out of memory

 scope

 concentrating on platform hardware errors for now

 the others possibly later

 but especially software errors are hard
 because there are so many of them

 what can you do with errors:

 log them

 categorize them: display critical ones on the desktop as pop up
 account them, keep statistics
 that many errors on device X in last 24hours

 trigger events
 e.g. when more than X errors in 24h call this shell script

 which pages admin, support, triggers failover

 or on a small home servers starts blinking the red LED
 (after all what else is the "LED subsystem" good for?)

 audiences

 desktop user

 normal system administrator

 expert

 automated analysis tool

 cluster logging

 the desktop user

 don’t really understand errors
 at best a very high level summary

 should not be unnecessarily concerned
 needs classification, hiding

 graphical interface

 localization

 details should still be available for expert support

 normal system administrator

 largely same as desktop user

 only really needs high level summary

 should not be unnecessary alarmed

 really wants to identify failed part

 graphical interface not as important
 can access log files

 but still useful if not intrusive

 needs reporting to the console

 expert / automatic tools

 compatibility crucial

 still want high level summary
 but all the details should be available

 interface to other tools
 might put error from a cluster in central database

 so what’s wrong with printk?

 difficult to parse

 good errors are verbose

 printk is traditionally for 1-2 lines
 most printks with more information are a mess

 no clear record boundaries

 categorization / severity important

 good errors too verbose for kernel log

 what’s good with printk

 it’s the standard
 a lot of people know where to look

 there are lots of tools to handle it
 including network servers

 but often not very good

 should be used for some high level categorization
 but only those errors that don’t make sense to hide

 error metadata

 hardware errors
 ultimative goal is to identify the failed part

 various other information

 various other data useful
 for example dropped event count

 advantage of standard records
 they tend to be reasonably well documented

 so you can point sophisticated users to documents

 make it easier to process

 rich errors are important
 need more data per error

 but don’t display it all by default

 why should some errors be hidden?

 some "errors" are normal and expected
 if you ever saw a noisy SMART daemon...

 or ECC memory has a expected corrected error rate

 let’s call them events
 they’re not really errors

 hardware errors are often bursty
 but individual events in a burst not too interesting

 and on large clusters too much data

 they’re still useful to see trends
 and should be accounted per component

 don’t belong in normal kernel logs

 error processing

 good error processing needs a lot of state
 and also policy

 GUI interfaces for important errors

 or triggering events

 with triggers when exceeding thresholds
 complex decoding
 identifying components using firmware help

 probably not a good idea in the kernel

 one corner case is fatal errors where the kernel has to panic
 the kernel needs to do limited decoding at least

 but most errors are not fatal

 need user space for rich error processing
 we already have it with klogd/syslogd

 just too dumb

 errors vs event tracing

 normal event tracing aimed at debugging
 so higher overhead is ok

 error handling should be always on
 has to work seamlessly in the background

 small footprint crucial
 particularly in memory

 and in dependencies

 requirements and tools are quite different
 should not be mixed up

 possibly reuse some infrastructure

 but only if it has extremly low overhead

 so what’s the master plan?

 right now for platform errors (MCE, APEI, PCI-AER)

 keep basic one line errors in printk with an identifier
 but only for serious errors or occasionally output for trends

 strictly rate limited

 possibly extend KERN_* for severity

 but add structured record on second channel
 similar to /dev/mcelog, but ascii in sysfs

 few record types for different types

 using standard formats (e.g. CPER)

 master plan user space

 a standard error daemon
 light weight to always run

 has knowledge over basic error types

 accounts events

 hooks for automated action

 simple network protocol interfaces

 extension of mcelog for more errors
 PCI errors, APEI

 more in the future?

 mcelog

Machine Check

CE memory error MCE decodingUC memory errorOther CPU errors

Per DIMM accountingCE threshold Per Socket tracking

DIMMThreshold Local socket protocolCE Trigger

Global log fileForce offline page/killUC threshold

UC Trigger

DIMM Trigger Reporting client

Per core accounting

RCThreshold

RC Trigger

Socket Threshold

Socket Trigger

 Questions?

 Backup

 kernel error problems

 some happen from NMI like contexts

 have to use lockless data structures
 can cause problems like livelocks

 requires preallocation, potentially wasting a lot of memory

