
How to do nothing efficiently or better laziness.

No idle tick on x86-64

Andi Kleen, SUSE Labs
ak@suse.de

 Idle loop basics

 Executed when the CPU is idle

 "Hottest" code path in kernel

 Optimizing idle is important contrary to folklore
 Saving power
 Virtualization
 Low latency

 Idling longer can result in better performance

 Idle loop II

 Waits for an interrupt or a reschedule.

 Special hardware and firmware support to idle better
 HLT, MONITOR/MWAIT, SMIs,
 Turns off parts of the CPU
 Allows hypervisor to schedule other processes

 Flavours
 HLT, poll, MONITOR/MWAIT, ACPI

 Timer basics

 Regular timer interrupt each jiffie
 Basic time unit (usually 1ms, 4ms, 10ms)
 Minimum unit of sleep without special hardware

 Time of the day (xtime)

 Kernel timers (add_timer)

 Rescheduling

 Process/interrupt time accounting

 Timer tradeoffs

 Shorter jiffie gives more accurate timers
 e.g. 10ms wasn’t enough for MPEG
 1ms was a bit too wasteful, now back at 4ms

 But wakes up the idle loop

 100, 250, 1000, ... times
 Costs power
 Problem for virtualization

 Timer flavours

 xtime vs gettimeofday vs jiffies

 PIT

 HPET

 APIC

 TSC

 pmtimer

 no idle tick

 Some other architectures already have it
 s390, i386, arm, xen
 Have various problems

 x86-64 implementation from scratch

 CONFIG_NO_IDLE_HZ
 /proc/sys/kernel/hz_timer sysctl

 Implementation

 Idle notifier
 Also useful e.g. for fixing up oprofile

 When entering idle turn off timer
 Or rather ask timer subsystem for next event

 Catch up with time on exiting

 Reprogram timer without losing ticks
 Adds more drift on some timers
 Can avoid this by using different timer for backing time

 CPU sleep states

 Lots of sleep states on PCs: C1-C4, S1-S3, P states, G* ...
 Only care about C states here

 Increasing latency
 Can do lots of work in SMM mode
 ACPI FADT tells us about them
 On this laptop 1us, 1us, 85us, 185us
 SMP traditionally only C1, but changing

 But useless when latency is near jiffie

 Moving between sleep states

 Ideally want average sleep time much larger than latency

 Linux ACPI algorithm needs idle ticks

 Code from Thomas Renninger to estimate average sleep time
 Bus mastering needs to be taken into account in C3
 And then go directly into right sleep state
 Sampling problem

 Generic Problems

 Accounting
 Can batch on wakeup

 Read Copy Update
 Advanced locking that needs regular feedback from all CPUs.
 Currently uses bad hack
 To tell other CPUs without adding too much synchronization

 Rescheduling tick on SMP
 Push rebalancing to busy CPUs

 x86-64/PC specific problems

 PIT is nasty to reprogram and loses time if you do it
 Original PC-AT time with bizarre slow ioport interface

 HPET support is often missing
 And HPET implementations differ
 Still problems with implementation

 Local APIC timer is not reliable
 Fast, easy to program
 Needed on SMP
 Stops in deeper C states and accuracy issues

 Sleep disturbances

 Various subsystems
 Fortunately only a few really bad offenders
 Need to fix a lot of kernel code

 USB polling
 Prevents entering C3 - big problem.

 User space
 "wiggling applets eat your battery"
 Power needs to be kept in mind when designing desktops!
 Need better tools

 Sample profile - console bootup, typing

 3752 i8042_timer_func+0
 2708 process_timeout+0
 1869 rh_timer_func+0
 1143 it_real_fn+0
 131 delayed_work_timer_fn+0
 113 e1000_watchdog+0
 98 cfq_idle_slice_timer+0
 89 neigh_periodic_timer+0
 48 wb_timer_fn+0
 44 acpi_thermal_run+0
 26 commit_timeout+0
 8 kd_nosound+0

 KDE bootup, konqueror, konsole

 1166 i8042_timer_func+0
 1070 process_timeout+0 kmix
 792 process_timeout+0 swapper
 764 process_timeout+0 kded
 604 rh_timer_func+0
 593 process_timeout+0 X
 540 it_real_fn+0 X
 214 process_timeout+0 kicker
 197 process_timeout+0 powersaved
 153 process_timeout+0 ksplashx
 144 cfq_idle_slice_timer+0
 136 process_timeout+0 kdesktop
 113 process_timeout+0 klipper
 95 process_timeout+0 suseplugger
 94 process_timeout+0 konsole
 88 process_timeout+0 konqueror
 80 process_timeout+0 watchdog/0
 67 process_timeout+0 smpppd
 63 process_timeout+0 kwin
 45 process_timeout+0 kwrapper
 45 delayed_work_timer_fn+0
 40 process_timeout+0 blogd
 39 process_timeout+0 udev

 Improvements

 next timer interrupt lookup in heap inefficient
 Better to keep track of wakeup point

 Inaccurate timers for better batching

 No tick even when not idle
 Needed for normal wakeup <1ms
 Accounting is difficult
 Easy would be to do a low frequency tick and speed up on demand
 Performance counters?

