
Where is the memory going?
Memory usage in the 2.6 kernel

Sep 2006

Andi Kleen, SUSE Labs
ak@suse.de

 Why save memory
 Weaker reasons

 "I’ve got 1GB of memory.
 Why should I care about memory?"

 Old machines
 Not too interesting because they tend to run old software too
 Embedded
 Also not too interesting because the kernels are heavily tweaked
 But perhaps they want to do less tweaking
 Leave memory for user space
 One of the better reasons so far.
 After all the user wants to run applications, not kernels

 Why save memory
 Important reasons

 Scalability
 Small memory issues often get worse on big systems
 1% of 1GB is 10MB, 1% of 100GB is 100MB, 1% of 1TB is 1GB, ...

 ... a percent here and a percent there ...
 Causes problems on NUMA systems
 Some nodes can be nearly filled up by kernel tables
 Bad performance due to imbalances of traffic

 Virtualization
 s390 VMs, Xen, vmware, qemu, ...
 Guests run whole own operating systems
 Guest systems have limited memory
 Limits maximum number of VMs per server
 Shouldn’t or cannot swap guests
 Main memory limits number of guests

 128MB guests are common, 64MB is not unheard of

 The most important reason
 Smaller is faster!

 Test setup

 x86-64 Intel Core2 machine with 1GB RAM
 Integrated graphics (8MB frame buffer)
 Running 2.6.18rc4 kernel with some patches for memory

measurement
 "Fat" configuration based on defconfig

 Measuring kernel memory: dmesg
 BIOS 10.05MB (0.98% of total), 980.3MB (95,7%) left after early bot

 > dmesg
 ...
 BIOS-provided physical RAM map:
 BIOS-e820: 0000000000000000 - 000000000009fc00 (usable)
 BIOS-e820: 000000000009fc00 - 00000000000a0000 (reserved)
 BIOS-e820: 00000000000e0000 - 0000000000100000 (reserved)
 BIOS-e820: 0000000000100000 - 000000003f5bf000 (usable)
 BIOS-e820: 000000003f5bf000 - 000000003f5cc000 (reserved)
 BIOS-e820: 000000003f5cc000 - 000000003f652000 (usable)
 BIOS-e820: 000000003f652000 - 000000003f6eb000 (ACPI NVS)
 BIOS-e820: 000000003f6eb000 - 000000003f6ef000 (usable)
 BIOS-e820: 000000003f6ef000 - 000000003f6ff000 (ACPI data)
 BIOS-e820: 000000003f6ff000 - 000000003f700000 (usable)
 BIOS-e820: 000000003f700000 - 0000000040000000 (reserved)
 BIOS-e820: 00000000ffe00000 - 0000000100000000 (reserved)
 ...
 On node 0 totalpages: 251483
 DMA zone: 1415 pages, LIFO batch:0
 DMA32 zone: 250068 pages, LIFO batch:31
 ...
 Memory: 1003884k/1039360k available (3384k kernel code, 34360k reserved, 2355k data, 220k init)

 Measuring kernel code size
 6.3MB (6.1%)

 Generic x86-64 "defconfig+" kernel 2.6.18-rc4 (+ minor patches)

 > cd /usr/src/linux
 > size vmlinux
 text data bss dec hex filename
 4791288 1185948 626328 6603564 64c32c vmlinux	

 Why caring only about code size is bad
 Dynamic allocators rule the memory

 Often discussions on kernel bloat focus on code size only
 Easy to measure with "size vmlinux"
 Historically trend upwards
 Actually 2.6 text sizes recently came down

 Embedded users with flash have some point
 But for everybody else it is small
 Percentage larger with small VM guest, but still small

 6.1% with "fat" kernel
 Lots of patches to make kernel text smaller
 Usually by putting in lots of ifdefs
 Or disabling valuable debugging code that should be enabled by default
 Even with zero byte kernel code you only save 6.1%!
 Dynamic memory is much more important!

 Linux memory users

 Some allocators

 Bootmem / Early allocator / Firmware
 Used early in system boot
 ~43.7MB (~4.26%) lost on test system
 See paper for details	
 Page allocator
 Main allocator that feeds everybody else
 Deals in orders of pages (4K on x86)
 Buddy algorithm
 All allocations aligned in address/size

 > Order 0 has fragmentation problems after longer uptime.
 See paper for more allocators

 Kernel users
 "A megabyte here and a megabyte there and soon we’re talking real memory."

 mem_map / struct page array(s)
 One entry for each page in the system
 1.37% of kernel memory on x86-64 (14.3MB)
 struct page already quite optimized (32/64bytes)
 Can be a big problem on large memory 32bit systems
 But 64bit is fine
 Sometimes memory holes can be wasteful
 NUMA/sparsemem can be more efficient with holes

 Page tables
 Tells the CPU’s MMU about the virtual memory
 ~8+ bytes per page, ~0.2% of each user mapping
 SLES10 GNOME+firefox after boot ~5.3MB
 Shared page tables/large pages might help
 Automatic large pages would need large VM changes

 Kernel users II

 Kernel stacks
 8K for each thread in the system (~1MB on test system)
 Can fail when page allocator is fragmented (order 1)
 On i386 4K stack option, but dangerous
 Page cache
 Takes all that kernel leaves over
 File cache
 FS metadata	
 User anonymous memory
 Mempools
 Reserve memory to avoid deadlocks under memory pressure
 When you need more memory to free memory

 ~480k (0.04%) on test system
 Can be much larger on bigger systems
 Scales with number of block devices etc.

 Work underway that might allow to eliminate them

 The slab allocator

 Main kernel object allocator
 Memory from page allocator
 Manages "slab caches" of fixed-size objects
 Large objects have meta data

 Can be often majority of kernel memory
 Performance critical
 e.g. for networking but many other subsystems too

 Many features
 NUMA aware
 per CPU caches
 cache coloring

 Has object caches that are only freed on demand
 Intended for "constructed" objects, but nobody uses that

 Measuring slab: slabtop

 > slabtop
 Active / Total Objects (% used) : 85349 / 88654 (96.3%)
 Active / Total Slabs (% used) : 12340 / 12340 (100.0%)
 Active / Total Caches (% used) : 94 / 136 (69.1%)
 Active / Total Size (% used) : 40022.52K / 40466.88K (98.9%)
 Minimum / Average / Maximum Object : 0.02K / 0.46K / 128.00K

 OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME
 20560 20560 100% 0.24K 1285 16 5140K dentry_cache
 12534 12528 99% 1.35K 6267 2 25068K ext3_inode_cache
 9720 9573 98% 0.09K 243 40 972K buffer_head
 5424 5399 99% 0.08K 113 48 452K sysfs_dir_cache
 5258 5116 97% 0.17K 239 22 956K vm_area_struct
 3815 3802 99% 0.52K 545 7 2180K radix_tree_node
 3548 3540 99% 0.99K 887 4 3548K inode_cache
 3304 3205 97% 0.06K 56 59 224K size-64
 2800 2772 99% 0.03K 25 112 100K size-32
 2410 2295 95% 0.38K 241 10 964K filp
 2065 2011 97% 0.06K 35 59 140K anon_vma
 1740 1737 99% 0.12K 58 30 232K size-128
 1672 1639 98% 0.50K 209 8 836K size-512
 1605 1598 99% 0.25K 107 15 428K size-256
 1395 1395 100% 0.25K 93 15 372K skbuff_head_cache
 ...

 More on slab allocator

 kmalloc sits on top and uses power-of-two caches
 32bytes ... 128K
 Problems
 Very complicated code now
 Unused caches can use a lot of memory
 Power of two kmalloc slabs often not good fit
 Freeing not directed at freeing pages
 Rewrite under way now

 Interactions
 "Free memory is bad memory." - Linus.

 Caches
 Fill memory
 Shrink only on demand
 Free memory isn’t something to look out for
 Just needs to be freed when needed
 Kernel objects are fixed in memory
 Cannot be moved, just freed
 Fragmentation
 Some objects are "pinned", others cache that could be freed
 Fragmentation
 Multiple objects in a 4K page
 Single object can prevent whole page from being freed
 Even when object is only cache
 Freers usually have own lists, don’t look at complete pages

 The dentry/inode caches

 dentry cache ("dcache") stores directory entries ("names") in
memory

 dentry is primary "handle" for file in kernel
 fairly large (~200bytes) + file name for names > 36
 Inode cache ("icache") stores inodes in memory
 Linux caches dentries aggressively to give good user experience
 Only freed on memory pressure
 Using a LRU list
 Most dentries have a inode object too
 But separate in memory
 Much larger (~770bytes)
 inode cache slave of dcache
 But separate LRU caches

 dcache/icache fragmentation

 Hash tables I

 > dmesg | grep -i hash
 PID hash table entries: 4096 (order: 12, 32768 bytes)
 Dentry cache hash table entries: 131072 (order: 8, 1048576 bytes)
 Inode-cache hash table entries: 65536 (order: 7, 524288 bytes)
 Mount-cache hash table entries: 256
 IP route cache hash table entries: 32768 (order: 6, 262144 bytes)
 TCP established hash table entries: 65536 (order: 9, 3670016 bytes)
 TCP bind hash table entries: 32768 (order: 8, 1835008 bytes)
 TCP: Hash tables configured (established 65536 bind 32768)

 Hash tables II

 4.78MB or 0.46%.
 Nearly as much as kernel .text!
 Hash tables sized based on memory size
 Large to make them effectively O(1)
 But you get the cache misses!

 Heuristics not very good
 Hashes sized for worst case workloads
 Can be tweaked on command line
 dhash_entries=,ihash_entries=,thash_entries=,rhash_entries=

 Please benchmark and send feedback!
 Possible solutions:
 Dynamic hash table growth/shrink
 Locking tricky

 Better data structures
 Various tree variants are looking promising
 Trees have better cache performance
 But not O(1) in theory

 Summary

 These were just generic examples
 On other workloads kernel users can be quite different
 But easy to measure
 No easy solution
 But the way to a leaner and faster kernel is to fix inefficient data

structures
 Have to work through them one by one
 Needs more work

 Wake up! Presentation over.

 Paper: http://www.firstfloor.org.org/~andi/memorywaste.pdf

 Presentation: http://www.firstfloor.org/~andi/memory.pdf

 Or in paper proceedings

 Questions?

 Thank you!

 Backup

 Measuring kernel memory: /proc/meminfo

 MemTotal: 1004104 kB
 MemFree: 578576 kB
 Buffers: 16436 kB
 Cached: 249040 kB
 SwapCached: 0 kB
 Active: 166312 kB
 Inactive: 186184 kB
 ...
 LowTotal: 1004104 kB
 LowFree: 578576 kB
 SwapTotal: 530104 kB
 SwapFree: 530104 kB
 Dirty: 2248 kB
 Writeback: 0 kB
 AnonPages: 86940 kB
 Mapped: 37172 kB
 Slab: 50008 kB
 PageTables: 4932 kB
 ...
 CommitLimit: 1032156 kB
 Committed_AS: 194788 kB

