
Machine check handling on Linux

Andi Kleen
SUSE Labs
ak@suse.de

Aug 2004

Abstract

The number of transistors in common CPUs and memory chips is growing each year.
Hardware busses are getting faster. This increases the chances of data corruption
by arbitrary bit flips in hardware. Modern chips can detect and sometimes correct
such events using ECC checksums and other techniques, but there are cases the
hardware can’t hide such problems completely and software has to handle it. Such
an event is called an machine check (MC).

As these events become more common, it’s becoming more and more important
that Linux recovers as well as possible from them.

The paper discusses some generic issues in handling MCEs in software and covers
the new recently rewritten x86-64 machine check handler.

1 What is a machine check

This paper is about machine checks. A machine check is the hardware’s way to
tell you about some internal error. Traditionally when something goes wrong in
hardware the machine crashes. With a machine check, software has a chance to do
something better.

The main focus is the x86/x86-64 platform, in particular on the AMD Opteron
(because that is the platform the author has most experience on with machine
checks). Most of the discussion applies in general terms to non-x86 architectures
too, although some details can differ.

There are two main kinds of machine check: machine check exceptions (MCEs)
and silent machine check. A machine check exception happens when there is an
error that the hardware cannot correct. It will cause the CPU to interrupt the
current program and call a special exception handler.

With a silent machine check the hardware was able to correct the error, but
logged the event to internal registers. There the event can be read by the operating
system or the firmware later. Silent machine checks don’t need immediate software
or administrator action, but it is useful to log and analyze them to get early cues
about hardware problems.

2 Why are they important?

Modern hardware has internal self checking, like internal checksums and error de-
tecting and correcting codes for caches and busses. But the number of transistors is
growing and feature size is shrinking with each chip generation, which both increases
error rates.



Clustering Linux machines into clusters for high performance scientific comput-
ing becomes more and more popular[beowulf]. In these clusters it is important to
gather information about machines failing so that corrective action can be taken
by the administrator. With a lot of machines the mean time between failures is
significantly decreased, which means error handling becomes more important.

When an hardware error occurs on a node the task that ran on it should fail
to prevent silent errors from being introduced into the computation. One way to
detect these problems would be self checks in the software (like checksums over
memory buffers or algorithms with internal sanity checks for results). But this is
not always possible and requires a lot of effort from the programmer. Another way
is to rely on the hardware error detection. When the kernel logs an uncorrected
hardware error the cluster software can take corrective action, like rerunning the
task on another node and reporting the failure to the administrator.

The same issues apply on servers and high availability clusters.
Logging hardware errors makes it possible to predict failures early.
Even on a desktop silent errors should be avoided. It is better to tell the user

that something went wrong due to a hardware issue instead of silently giving wrong
results or crashing randomly.

Sources of machine checks can be the CPU, PCI IO1, memory, caches, internal
busses. The errors can be corrected errors (only logged to registers, no exception)
or uncorrected errors (exception happens, software must react).

When PCI IO errors are enabled machine checks could be also caused by software
bugs in drivers2

3 A quick overview of the x86 machine check ar-
chitecture

The original IBM PCs had parity memory and caused Non Maskable Interrupts
(NMIs) when a memory error occurred. Later PCs dropped parity memory, but
still reported some hardware errors

Then with the Intel Pentium, basic machine check handling was added to the
CPU again. With the Pentium Pro Intel defined a new generic x86 machine
architecture[intelsys]. This architecture is implemented by modern x86 CPUs from
Intel and AMD. It consists of a standard exception (interrupt 18) for machine checks
and some standardized Machine Specific Registers (MSRs). The common registers
allow software to check if an machine check occurred, to enable and disable them,
check whether the error was corrected or corrupted the CPU state and some other
things.

In addition there are some more registers for each bank. A bank is a group of
errors generated by a specific subsystem (like CPU, bus unit, cache, north bridge).
The number and meaning of banks is CPU dependent.

Each bank has a number of sub-errors that can be enabled or disabled individ-
ually. Normally a generic machine check handler enables all errors and all banks 3

A machine check bank also has a register for the address associated with the error.
Some CPUs like the Intel Pentium 4 also have extensions over the standard

registers[intelsys].
The advantage of this generic architecture is that a single machine check handler

can work on many different CPUs. When an machine check is detected, the kernel
1Normally not enabled on current PCs.
2But this normally isn’t the case on current x86 machines.
3Sometimes some particular machine check errors are not reliable in hardware, but it is assumed

that the BIOS disables the broken ones.



reads all the generic machine check registers and the registers from any banks that
signaled an error.

The actual decoding and interpretation of the different errors is CPU dependent
and up to the user. Some generic handling can be done; for example when a bank
has a valid error address, the handler can assume that the memory at this address
got corrupted. Also the handler can take different action depending on if the error
was corrected or not and if the error corrupted the CPU context.

Modern Intel CPUs have special thermal errors that happen when the CPU
overheats and gets throttled. This normally only needs to be logged.

Some chipsets can be configured to trigger NMIs on various PCI or other bus
errors.

4 Why is it hard to write a machine check handler

Cannot use any normal kernel services. Normally kernel code can be in process
context or in interrupt context. Interrupt context can do less than process context;
it can only call functions that properly protect their data structure against parallel
occurring interrupts. Such ”safe” functions are called ”interrupt-safe”.

Machine check exceptions can trigger all the time, even in a critical section when
all normal interrupts are disabled. This implies that the machine check handler
cannot even use interrupt-safe functions, otherwise it would risk deadlocking on
kernel spin locks.

For silent machine checks, undefined interrupt state isnt a problem because they
normally run from the timer interrupt, which honors normal interrupt exclusion
rules. However to make the code simpler the silent checking and the exception
handling share the same code paths, which means that these problems apply to
some extent to the silent event check too.

It is also important to handle the machine check quickly (because the machine
may be already unstable after an hardware failure). When the handling is delayed
to bring the kernel into a easier to handle state first there is a risk that the event
cannot be handled at all. Also when another machine check occurs on the same bank
in this time window it would overwrite the old event and become un-handleable.

For more complex event like an RAM error however there may be no other choice
than to delay handling, because they must synchronize with kernel locks.

Unlike other exceptions, machine checks are asynchronous. This means the CPU
core does not take care of reporting them at the exact instruction that caused the
failure, but they may be reported only hundreds of cycles later. This makes handling
less reliable as discussed below.

5 Logging machine checks

Traditionally machine checks were logged by the firmware4. When the operating
system does not have an machine check handler, the MC registers will never be
cleared. After the next warm boot5 the BIOS finds the information from the last
machine check and logs it to an event log. This method has obvious shortcomings:
the logging only happens when the machine is rebooted, it cannot log multiple errors
in the same bank and it is hard to collect this information in a network or save it
to disk.

4BIOS on PCs.
5On IA64 and PPC64 machines this can be handled without rebooting by PAL code or the

hypervisor.



Moving the logging to the operating system can avoid all these problems. Even
then it is still difficult. Most Linux users have the X server running and the console
is invisible. This means that the handler could log a fatal machine check, but the
user wouldn’t see it and just see a frozen X. One way to avoid this right now is to
log the error after the next reboot only. This also allows us to save it to disk, which
makes it possible to check it later by support personnel.

It is important to clearly separate machine check logs from other software errors
(like oopses). Most users cannot distingush them and they will ask their software
vendors about it, when they should really contact the hardware vendor. Experience
has shown that the only good way to do this is to separate the log mechanisms
completely.

6 x86-64 rewrite

The original x86-64 machine check handler in Linux 2.4 was derived from the i386
version, which was originally written by Alan Cox. One of the first enhancements
was a text decoder of the AMD Opteron specific banks6, in particular for memory
errors. This decoder code unfortunately had a few bugs and turned out to be a
design mistake. It is better to do such decoding in user space.

The handler also had a few problems inherited from the i386 version, in particu-
lar it used printk directly from the handler, which could deadlock. There were also
a few other problems, which triggered a rewrite from scratch of the x86-64 handler
during Linux 2.5.

It closely follows the recommendations given by Intel[intelsys] and AMD[amdsys]
for machine check handlers. One important change is that the new handler makes
some attempts to distinguish between uncorrected errors and errors that corrupt
the processor context. In the first case only the process is killed when it is safe.
The old handler would always panic.

This killing can be slightly risky when the process was in kernel mode, because
it could have been holding locks and that deadlock on process exit.

By default the kernel will always panic on a MC in the kernel to avoid this
deadlock. The rationale is that a panic can be handled better than a deadlock,
especially in a cluster. 7

The new handler doesn’t have any CPU specific code any more 8, it handles
everything using the generic x86 machine check architecture.

It has a new lockless binary logging system. All machine check events (silent and
exceptions) will be logged to a special buffer. This buffer isn’t a ring buffer, if the
buffer fills up new entries are discarded. It is completely separated from the normal
printk log and can be accessed from user space using the /dev/mcelog character
device. This device should be read in a regular cronjob by the mcelog[mcelog]
program. mcelog decodes the event and logs it into a special log file. It could also
notify administrators about the event.

The log buffer also has a special signature in memory that could be used by an
external debugger or special firmware to look for hardware errors after reboot.

On a panic the bank causing the fatal error is not cleared to allow firmware or
the kernel to log the error after an warm reboot to permanent storage9.

It has a regular polling timer that reads silent machine checks and logs them.

6The x86-64 port ran only on Opteron at this time so it was a natural idea.
7This heuristic is not completely reliable right now due to the asynchronous nature of machine

checks.
8Except for one BIOS bug workaround
9As of 2.6.8 this feature is not in mainline yet



/* A machine check record */
struct mce {

__u64 status; /* bank status register */
__u64 misc; /* misc register (always 0 right now) */
__u64 addr; /* address or 0 */
__u64 mcgstatus; /* global MC status register */
__u64 rip; /* Program counter or 0 for silent error */
__u64 tsc; /* cpu time stamp counter */
__u64 res1; /* for future extension */
__u64 res2; /* dito. */
__u8 cs; /* code segment */
__u8 bank; /* machine check bank */
__u8 cpu; /* cpu that raised the error */
__u8 finished; /* entry is valid */
__u32 pad;

};

7 Configuring the new x86-64 handler

The new handler can be configured at system run time by reading or writing the
control files in /sys/devices/system/machinecheck/machinecheck0/ 10 Valid fields
are:

• tolerant Tolerance level. The higher this level the more risk the machine check
handler takes to keep the machine running.

Valid levels are:
0 always panic on uncorrected errors.
1 panic if deadlock possible
2 try to avoid panic at slight deadlock risk
3 never panic or exit (for testing only)

Specifying oops=panic on the kernel command line implies zero tolerance.

For a cluster setting tolerant to zero may be best, together with panic=10 to
force an reboot.

• check interval Interval in seconds to check for silent machine check events.
Default 5 minutes. 0 disables background checking.

• bank0ctl ... bankNctl Binary mask of errors enabled in bank N. Default is to
enable all errors in each bank. An disabled error will be ignored. For details
on the banks and their sub-errors for AMD and Intel CPUs see [opteron] and
[intelsys].

8 Future work: New RAM/cache error handling

RAM errors are the most common sources of machine check events. The memory
controller runs asynchronously from the CPU core, which results in errors getting
reported imprecisely. The MCE handler assumes that the error occurred in the
process that was active at exception time and checks if it was in kernel or user
mode. It then uses this information to decide which process to kill or if it should
panic. When the error happened shortly before a kernel call or a context switch this
information may be stale. A more reliable alternative would be to use the physical

10machinecheck0 applies to all CPUs in the system.



error address provided in the MCn ADDR register and use VM data structures
to look up to which process the memory address belong. This could be multiple
processes for shared memory.

The handler would first need to synchronize to process state because VM locks
are not interrupt safe. It could first go into interrupt context by forcing an self
interrupt11 on the same CPU (this would delay execution to the next local interrupt
enable and a standard interrupt context). Then this interrupt handler could set up
a work queue item to run a callback in one of the event processes on the local CPU.

This callback could use the mem map and rmap data structures offered in Linux
2.6 to look up the owner of the failed page. There are various cases to distinguish
in the kernel page cache:

Free page Ignore and clear error
Clean page Free page and reread contents from disk
Dirty page Kill process owning or force IO error for unmapped file cache data
Kernel page Panic or kill process depending on tolerance level

This approach could also be possible to handle uncorrected cache errors. In the
future it may be also possible to give an application a chance to react to a machine
check error by sending it a signal with the failed address as payload instead of
unconditionally killing it12. The program could then decide how to handle the
corrupted memory. For example a database server with a lot of data cache which
is backed by the disk could just drop a corrupted cache page and reread it.

9 Future work: Handling IO errors on PCs

Some non-PC platforms like HP zX or IBM PPC64 chipsets raise machine checks
on PCI IO bus aborts. On PCs these errors are normally silently ignored. Some
chipsets can be configured to raise an NMI in this case. It would be possible to
write chipset specific drivers that look up the PCI bridge error registers on NMI
and try to figure out what device caused the error. Then disable the PCI device to
prevent further corruption13 and log an error to the user. This would be useful for
driver debugging and could potentially protect the kernel against failing PCI cards.
To do the latter properly it would also need a full IOMMU.

PCI Express[pcie] has an optional but standardized advanced error report ca-
pability in its bridge configuration space that may be useful here.

One problem is that there is no well-defined way to find the source of an NMI
because it is used by other subsystems like oprofile.

Another problem is that changing the PCI bridge programming of the firmware
(e.g. to enable additional error reporting using NMI) has always some risk.

Still it might be worth it because handling PCI errors better could potentially
increase Linux/x86 reliability longer term. Short term it would uncover some more
driver bugs, although many of those should be already fixed from testing on PPC64
and IA64. I am not quite sure it will be possible to implement this generally on
PCs, but it would be at least worth a try.

10 Work to do

NMI handling is still broken. Currently it reads some IO ports and handles them
based on what they did on IBM AT, which is not very useful anymore on modern
machines. It also still uses printk and should use the lockless logging framework.

11This may require using APIC mode or alternatively put a check into the timer handler
12The MCE cannot currently be caught by a signal handler.
13On the HP and IBM workstation chipsets this is done by firmware



Add a proper thermal handler on x86-64.
The improved x86-64 machine check handler should be ported to x86.
Mcelog doesn’t decode AMD Opteron specific errors so far. Currently it only

dumbs the registers as hexadecimal. It would be more user friendly to show the
individual banks as text, with the various error bits decoded. Intel decoding support
should also eventually be added.

11 Acknowledgments

The original i386 Linux MCE handler was written by Alan Cox. Dave Jones and
Zwane Mwaikumbo also worked on the i386 handler in Linux 2.5. Paul DeVriendt,
Richard Brunner, David Boles gave valuable feedback on the x86-64 rewrite and
helped me to understand the problem better. Special thanks to Eric Morton for a
lot of review and patches of the code and to Randy Dunlap for reviewing this paper.

References

[beowulf] Becker Donald, Sterling Thomas Beowulf: A Parallel Workstation For
Scientific Computation

[intelsys] Intel corporation

IA-32 Intel Architecture Software Developer’s Manual Volume 3:

System Programming Guide

http://developer.intel.com

[opteron] AMD

BIOS and Kernel Developer’s Guide for AMD Athlon 64 and AMD Opteron
Processors

http://developer.amd.com

[amdsys] AMD

AMD64 Architecture Programmer’s Manual Volume 2: System Programming

http://developer.amd.com

[mcelog] Kleen

mcelog utility tarball

ftp://ftp.x86-64.org/pub/linux-x86 64/tools/mcelog/

[pcie] PCI SIG

PCI Express Base Spec

http://www.pcisig.org


