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1 Abstract

Memory error handling is an increasingly important topic. The paper describes memory error handling
in user space on Linux systems using the mcelog daemon. It describes features like bad page offlining or
cache error handling that improve the uptime of server systems.

2 Introduction

Servers and high-performance computing systems contain more and more memory to handle bigger data
sets. But with more and larger memory modules, and more transistors in them, combined with larger
clusters of systems, the rate of memory errors in operation is also increasing.

Modern server systems generally use ECC memory and other ways to detect and correct many mem-
ory errors in the hardware. When the hardware corrects an error it generates corrected error events. These
events can be also used by specialized software to prevent future failures.

mcelog is a daemon for handling and reporting hardware errors. It is able to use trends in corrected
error reports to implement specific error prevention algorithms.

3 Basic error architecture

A modern x86 server CPU with an integrated memory controller memory and ECC memory constantly
checks for memory data errors and corrects and reports them. For this it uses techniques like patrol
scrubbing and demand scrubbing and also computes the checksum of all data read from memory.[8].
Errors will be usually reported to the operating system using the standard x86 machine check architecture
(MCA) registers. Uncorrected memory errors – that is data corruption – are reported using a machine
check exception and handled directly by the kernel, for example by killing the affected process or shutting
down the system down.

Corrected errors are polled by a timer or interrupt handler1 and reported to the mcelog daemon. The
mcelog daemon decodes the error and does accounting and other book keeping. The rest of the paper
will discuss the various actions implemented in the mcelog daemon.

Traditionally mcelog was run as a cronjob, but in newer distributions it supports a daemon mode
started by an init script. It is recommended to ensure the daemon is always running on every system with
ECC memory. 2

More information on the basic architecture can be found in [1] and the hardware architecture is
described in [3].

1Older system check with a regular timer, newer Intel systems have support for a special CMCI interrupt for faster notifi-
cation.

2At least one popular distribution ships the init script, but does not enable mcelog. It is recommended to enable it manually,
otherwise no memory errors will be logged.
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Figure 1: mcelog basic error flow

3.1 EDAC

Linux also has an alternative memory error reporting infrastructure called [9]. It consists of separate
drivers for specific platforms that use hardware facilities to do memory error counting and DIMM topol-
ogy discovery. While it supports basic memory error counting and some logging, it does not implement
any of the advanced features described here. EDAC is not covered in this paper.

4 Soft errors versus hard errors

When a corrected error – or soft error – occurs in a system this is not necessarily a problem. In fact on
systems with long uptime there is an expected soft error rate that will be reported. The hardware platform
uses error correcting codes and redundancy to handle soft errors. This is why they are called corrected
errors. Unlike an uncorrected (hard) error – that is data corruption – soft errors do not directly require
software reaction. Also since there is an expected soft error rate for each system some soft errors are
expected to occur. A small number of soft errors in a given time frame is generally not a problem.

The actual soft error rate depends on many factors, including quality of memory, size of memory
(the more transistors in memory the more errors), quality of the motherboard and other factors. Memory
soft errors can also occur in interconnections (like PCI-Express or QPI) and in CPU caches and other
hardware components. Above all on clusters of multiple systems the total error rate of the cluster is of
course rising, too. The more components a cluster contains the more – but usually corrected – errors.

The goal of correct error trend analysis is thus not to react to the first reported error, but look at trends,
and when the error rates exceed specific thresholds to warn the administrator or take other corrective
action. These error thresholds are never absolute numbers3, but an error threshold defined for a specific
time period.

For more details on error rates on realistic systems see [2] and [4].
3Any absolute number could be exceeded by a system with long enough uptime.



5 Logging

The simplest action in mcelog is to log the error to disk or syslog. The error will be decoded into an
ASCII representation containing all information reported by the hardware, like the error address or the
type of the error. The default log file is /var/log/mcelog.

mcelog will also attempt to determine the DIMM associated with the error if possible. This requires
CPU specific support in mcelog. It will also attempt to determine the motherboard label and part number
associated with the DIMM. This requires correct SMBIOS tables in the BIOS.

In some use cases – like combined error reporting for a large cluster– full soft error logging can
generate a large amount of information. An alternative is to turn off logging and only rely on threshold
counters. This is supported with the filter-memory-errors option in mcelog.conf.

6 Error accounting
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Figure 2: mcelog thresholds

mcelog accounts all memory errors reported. The error accounting can be per DIMM4, per page
and per socket. In some cases when the DIMM cannot be determined it will fall back to accounting per
DDR channel or per CPU socket. The error accounting information will be stored in a in memory error
database.

In addition to a global counter mcelog also maintains thresholds using a leaky-bucket algorithm.
When the number of errors in a specific time window exceeds a preconfigured threshold a trigger will
be executed. Triggers usually are shell scripts in /etc/mcelog, but can be also other internal actions.
Thresholds and triggers can be configured in mcelog.conf

6.1 mcelog client

The error database of a running daemon can be queried with mcelog –client. The client will query the
daemon using a local unix socket and print the current global error counts and threshold states.

Listing 1: mcelog –client output example
# mcelog −−c l i e n t
Memory e r r o r s
SOCKET 0 CHANNEL 2 DIMM 1
c o r r e c t e d memory e r r o r s :

3 t o t a l
3 i n 24h

u n c o r r e c t e d memory e r r o r s :

4If the CPU or BIOS supports determining the DIMM



0 t o t a l
0 i n 24h

SOCKET 0 CHANNEL 0 DIMM 0
c o r r e c t e d memory e r r o r s :

3 t o t a l
3 i n 24h

u n c o r r e c t e d memory e r r o r s :
0 t o t a l
0 i n 24h

6.2 mcelog triggers

When a error threshold is exceeded mcelog calls a trigger. A trigger is normally a simple shell script,
located in /etc/mcelog, that is called with a set of predefined environment variables. The administrator
can put own actions in there, like notifying the administrator or logging to a central cluster server. By
default any trigger will log a summary message into the system log. It is recommended to not modify
the original scripts, but put any site specific actions into a .local subscript that is called by the original
trigger.

Listing 2: Environment passed tp the DIMM error trigger
# THRESHOLD human r e a d a b l e t h r e s h o l d s t a t u s
# MESSAGE Human r e a d a b l e c o n s o l i d a t e d e r r o r message
# TOTALCOUNT t o t a l c o u n t o f e r r o r s f o r c u r r e n t DIMM o f CE /UC depend ing on
# what t r i g g e r e d t h e e v e n t
# LOCATION C o n s o l i d a t e d l o c a t i o n as a s i n g l e s t r i n g
# DMI_LOCATION DIMM l o c a t i o n from DMI / SMBIOS i f a v a i l a b l e
# DMI_NAME DIMM i d e n t i f i e r from DMI / SMBIOS i f a v a i l a b l e
# DIMM DIMM number r e p o r t e d by hardware
# CHANNEL Channel number r e p o r t e d by hardware
# SOCKETID S o c k e t ID o f CPU t h a t i n c l u d e s t h e memory c o n t r o l l e r w i t h

t h e DIMM
# CECOUNT T o t a l c o r r e c t e d e r r o r c o u n t f o r DIMM
# UCCOUNT T o t a l u n c o r r e c t e d e r r o r c o u n t f o r DIMM
# LASTEVENT Time stamp o f e v e n t t h a t t r i g g e r e d t h r e s h o l d ( i n t i m e _ t

fo rmat , s e c o n d s )
# THRESHOLD_COUNT T o t a l number o f e v e n t s i n c u r r e n t t h r e s h o l d t i m e p e r i o d

of s p e c i f i c t y p e

7 Bad page offlining

One reasonably common class of memory errors is a single "stuck bit" in the DIMM[4], [2]. The bit
stays stuck in a specific state and will result in future read errors. Other bits in the same DIMM or on
the same channel are not affected. With ECC DIMMs this error can be corrected: it is not immediately
a fatal problem. But when another nearby bit gets corrupted for some reason this could develop into an
uncorrected 2-bit error. In addition the stuck bit will generate regular continuous corrected error reports
when the memory scrubber scrubs it again. Handling these reports takes some time and may drown error
thresholds for other purposes. It does not actually tell anything new.

The best strategy is to simply stop using the bit. The only entity which has reasonable fine control
over that is the operating system. The OS manages memory by pages (typically 4K of size) and it’s
possible to offline the page containing the stuck bit and stop using it. Linux has had a page migration ca-
pability for some time – originally developed for NUMA tuning purposes – that was easily repurposeable
for offlining. Similar strategies have been used by other operating systems for some time[5].



When running in daemon mode mcelog keeps track of corrected memory errors per 4K pages and
maintains error counters for each page. This is controlled using the [page] section in mcelog.conf mcelog
defaults to page tracking enabled by default (if the CPU supports it) with offlining of a specific page when
a threshold of 10 errors per 24 hours is crossed. This threshold is a reasonable conservative threshold for
today’s DDR3 memory subsystems.

Maintaining these statistics has a memory overhead (64 bytes including metadata per 4k page on a
64bit system, that is roughly 1.5% of memory). Since mcelog is running in user space this memory can
be swapped out when needed. On typical systems the number of errored pages is small and memory
usage is not a problem. Mcelog has support for limiting the maximum memory

Starting with kernel versions 2.6.33 (and in some 2.6.32 kernels with backports) Linux supports a
page soft-offlining capability. That is the contents of the page are copied somewhere else (or dropped if
not needed) and the original page is removed from the normal operating system memory management
and not used anymore.

The capability is called soft-offlining because it never kills or otherwise affects any application, in
contrast to the "hard-offlining" that is done when an uncorrected recoverable data error happens. The
memory is just copied to a new page and transparently remapped.

One caveat is that offlining does not work for all pages, but only for pages in the Linux page cache
(that is containing application memory or file data) and free pages. Hugepages are also currently not
supported5 With common workloads (if they are not hugepages heavy) the majority of memory can be
usually soft-offlined. There is ongoing work to improve the soft offliner for more page types.

The page-types tool included with the kernel source can be used to display page types. This is the
current state of the author’s work station. All the page types in the top ten, mostly consisting of LRU
pages in the page cache and free pages (nopage), can be offlined if they should develop a stuck bit.

# page−t y p e s | awk ’ { p r i n t f "%8s %8s %15s %30s \ n " , $2 , $3 , $4 , $5 } ’ |
s o r t −rn +1 | head

1310720 5120 # t o t a l
885248 3458 __________________________________
262144 1024 ____________________n_____________ nopage

36400 142 __RU_l____________________________ r e f e r e n c e d , u p t o d a t e , l r u
31530 123 ___U_l____________________________ u p t o d a t e , l r u
28024 109 ___U_lA___________________________ u p t o d a t e , l r u , a c t i v e
23955 93 ___U_lA____Ma_b___________________ u p t o d a t e , l r u , a c t i v e , mmap , anonymous ,

swapbacked
17105 66 __RU_lA___________________________ r e f e r e n c e d , u p t o d a t e , l r u , a c t i v e

7787 30 __R__l____________________________ r e f e r e n c e d , l r u
5534 21 _______S__________________________ s l a b

Bad page offlining works on CPUs that provide a physical address on corrected memory machine
check errors. These are usually CPUs with integrated memory controller and ECC memory support.
On some CPUs the address can only be retrieved with help from the BIOS through an ACPI GHES[7]
driver. The BIOS has to be configured to "firmware first" mode. The GHES driver is available since
Linux 2.6.34 or in backports as loadable modules for 2.6.32 based distribution kernels[6].

Bad page offlining state is currently only kept in memory and not saved over reboots. This greatly
simplifies the implementation, otherwise the operating system would need to detect when DIMMs have
changed. The drawback is that the page with the stuck bit will be used for some time again after the next
reboot unless enough corrected errors have accumulated to offline it again.

8 Cache error handling

Modern x86 CPUs consist mostly of cache memory. Checking the health of the cache is a good way to
check the health of the CPU.

5hugepage soft-offline support is in development and scheduled for the Linux 2.6.37 kernel.



Recent Intel®CPUs have support for enhanced cache error reporting to report on the health of the
CPU caches for corrected machine checks. To quote the Intel Architecture Software Developer’s Manual
(Volume 3, 15.4)[3]

A processor that supports enhanced cache error reporting contains hard- ware that tracks
the operating status of certain caches and provides an indi- cator of their "health". The
hardware reports a "green" status when the number of lines that incur repeated corrections is
at or below a pre-defined threshold, and a "yellow" status when the number of affected lines
exceeds the threshold. Yellow status means that the cache reporting the event is operating
correctly, but you should schedule the system for servicing within a few weeks.

When mcelog sees a "yellow" state on a cache it attempts to offline the cores owning that cache. This
will prevent the cache from being used further. This allows the system to continue operating, but with
reduced computing capability.

This feature can be configured using the options in the [cache] section of mcelog.conf. When a cache
error occurs the trigger script configured with cache-threshold-trigger is executed. By default mcelog
calls the /etc/mcelog/cache-error-trigger script which offlines the affected CPUs through the CPU offline
interface of sysfs and logs a message to the system log. Stopping scheduling processes on these CPUs
will stop using the caches owned by these CPUs. Thus the system can continue operating with reduced
computing capacity. There is currently a limitation that the first CPU core cannot be offlined.

9 Deployment

The earlier non-daemon versions of mcelog have been deployed in major 64bit Linux distributions for
many years as a simple cron job. Since the Linux 2.6.32 kernel it also started supporting 32bit distribu-
tions. The new versions with daemon and error database functionality are starting to get deployed now,
but are already shipping in some recent distributions. The eventual goal is to have mcelog running by
default for error handling on all Linux servers.

10 Conclusion

Handling memory errors well is important for server reliability. As shown mcelog can improve the
reliability of a system by doing predictive failure analysis on corrected memory errors. This can result
both in alerting the system administrator before a system fails and in some automatic actions that improve
system reliability.
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