
Predictive bitmaps

An experiment in speeding up Linux
demand paging

Andi Kleen

 Caveat

 Experiment

 Work in progress

 Historical background

 Old home computer OS didn’t have VM
 Loading ...

 AmigaOS, C64

 Original Unix written for 16bit PDP/11
 Each process had up to three 16bit segments

 Processes were swapped in/out of memory completely

 VM on VAX in the 80ies
 2-4MB memory

 2K pages

 Demand Paging on BSD

 Pages are read/created only on first touch	
 Complete process swapping still possible

 Demand paging

 Linux fully demand paged
 Just VMAs and file handles exist initially

 Even page tables are only created on demand

 Naive view demand paging gives optimal memory use
 More difficult to age pages only needed once

 Access patterns scattered
 Depending on how the program is executed

 Bad for IO subsystem

 Everything is done one page at a time
 There is readahead, but it often doesn’t help

 Not much batching possible

 Pages

 On x86 pages normally 4K
 8K, 16K, 64K also on other architectures

 Very small for modern memory sizes

 large pages optional, handled outside normal VM in hugetlbfs

 Kernel keeps a page cache
 Pages can be mapped into process address space

 Cached in the background
 write/read just copy to/from them

 mmap (including executable mappings) access directly

 Also used for metadata by many file systems

 All the same radix tree data structure internally

 mmaped IO
 Used for executables, shared libraries, other files (with mmap)

 First just virtual address space is reserved
 On fault the kernel creates page table and maps the page in
 Searches the page in the page cache

 When cached just create reference ("minor fault")

 When uncached read from disk ("major fault")

 Even minor fault relatively expensive in CPU time
 Tens of thousands of cycles

 Sophisticated readahead algorithms in page cache
 Detects sequential patterns

 Initiates readahead in the background

 Readahead window is grown automatically

 Special case for full file access

 Limit of pinned pages (2MB by default)

 Sample address space layout

 # cat /proc/self/maps

 00400000-00405000 r-xp 00000000 08:03 973466 /bin/cat

 00604000-00606000 rw-p 00004000 08:03 973466 /bin/cat

 01c6e000-01c8f000 rw-p 01c6e000 00:00 0 [heap]

 7f89908d8000-7f8990a14000 r-xp 00000000 08:03 1460168 /lib64/libc-2.6.1.so

 7f8990a14000-7f8990c13000 ---p 0013c000 08:03 1460168 /lib64/libc-2.6.1.so

 7f8990c13000-7f8990c16000 r--p 0013b000 08:03 1460168 /lib64/libc-2.6.1.so

 7f8990c16000-7f8990c18000 rw-p 0013e000 08:03 1460168 /lib64/libc-2.6.1.so

 7f8990c18000-7f8990c1d000 rw-p 7f8990c18000 00:00 0

 7f8990c1d000-7f8990c39000 r-xp 00000000 08:03 1460357 /lib64/ld-2.6.1.so

 7f8990cee000-7f8990d2d000 r--p 00000000 08:03 324805 /usr/lib/locale/en_US.utf8/LC_CTYPE

 [...]

 7f8990e35000-7f8990e36000 r--p 00000000 08:03 308435 /usr/lib/locale/en_US.utf8/LC_IDENTIFICATION

 7f8990e36000-7f8990e38000 rw-p 7f8990e36000 00:00 0

 7f8990e38000-7f8990e3a000 rw-p 0001b000 08:03 1460357 /lib64/ld-2.6.1.so

 Trends

 Memory is getting faster and bigger
 But slower than CPUs.

 Latency doesn’t improve that much

 Hard disks are also getting faster and bigger
 But much slower than memory again

 Latency is still quite poor

 Swapping is slow
 Especially swapping in

 Seeks cost

 Disk system overview

 Disk transfer rate

 Hard disk facts

 Hard disk reasonably fast
 80+MB/s on a 7200rpm disk with little seeking

 For sequential transfers

 On seeky workloads transfer rate drops dramatically
 Depends on spin rate

 But even on fast disks it drops <10MB/s

 Connection to hard disks (SATA) has plenty of bandwidth
 And hard disk has a large buffer (8MB)

 Each seek+transfer reads a complete track into disk memory
 Getting whole track (nearly) free

 Assuming file is not fragmented

 Unit of useful IO
 Currently around 1MB.

 Growing in each generation

 Exception: Solid State Device
 Flash disks

 Flash disks becoming larger and cheaper
 Expect they will replace HDs at some future point

 Currently still far more expensive and smaller

 Eliminate seek time (mostly)
 Still some command overhead

 But most of them are currently slow for writing

 Unit of useful IO is still quite large
 Due to erase block sizes on writes

 And requirement to use multiple chips in parallel

 But still HDs will be with us for a long time
 And best flash tuning still under study

 Disclaimer

 This presentation does not cover flash

 How a program is loaded

 ELF loader reads the header / PHDRs (few KB only)

 Maps all LOAD segments in
 Not even page tables are setup

 But doesn’t do any IO

 Starts "interpreter" (ld.so)
 Reads headers of the shared libraries

 Maps them in

 IO only on headers

 Program starts executing
 Each page fault on .text reads a 4K block from disk

 A lot of seeks typically

 Executable access pattern
 /bin/ls using a systemtap script

 # cat fault.stp
 probe vm.pagefault {
 if (task_execname(task_current()) == "ls" && address < 0x100000000) {
 printf("%u\n", address);
 }
 }
 # stap fault.stp
 # ls

 ls faults

 gdb /bin/ls + run faults

 emacs faults

 What happens when we disable demand
paging?

 Simple patch in kernel
 echo 1 > /proc/sys/vm/mmap_slurp_all

 Always read mapping completely during mmap
 Can be done asynchronously

 Right now synchronously

 Disadvantage
 More memory use

 More IO

 Doesn’t interact well with mmap for normal file IO

 mmap_slurp_all results
 No GUI programs because they’re difficult to time

 All with cold caches (echo 1 > /proc/sys/vm/drop_caches)
 gcc -O2 -S sched.i
 CPU: 1.57[sd 0.05] -> 1.42[sd 0.02] -10%

 MEM: 5787MB[sd 143] -> 6968MB [sd 130] +17%

 emacs -batch
 CPU: 0.85s[sd 0.05] -> 0.59s[sd 0.05] -31%

 MEM: 10834MB[sd 181] -> 11968B[sd 199] +10%

 gdb -batch
 CPU: 0.18s[sd 0.02] -> 0.12s[sd 0]

 MEM: 2836MB[sd 130] -> 4274MB[sd 86]

 pbitmaps

 Idea originally from DG/UX
 echo 1 > /proc/sys/vm/pbitmap_enabled
 Add a new ELF section on disk that contains one bit for each

program page

 (except anonymous which is not known in advance)

 Bitmap updated on program exit based on the page tables
 On exec prefault all the pages in the bitmap
 Also precreate BSS pages

 Implementation

 Based on sys_readahead
 Uses some throttling based on free memory on local node

 Ignores block congestion currently

 Synchronous
 Could use a prefetch thread for larger working sets

 Three phases
 Read bitmap

 Start readahead on bitmap

 Fault pages in

 PHDR vs SHDR
 PHDR would be better but requires relinking

 SHDR is additional seek, but can be added easily

 Using SHDR hack right now

 Access rights

 O_FORCEWRITE for bitmap write to mapped executable
 Normally forbidden

 No security implications

 Flag currently exposed to user space

 Executables have to writable by executing uid
 Without it just the last prefetch state is used

 Could force write in kernel
 New in-kernel credentials infrastructure from AFS

 Or just changing uid temporarily

 Need to think through the security implications

 Problem are advanced security models like selinux, AA, smack

 pbitmap I

 Optional batching of page faults (early_fault sysctl)
 Makes IO synchronous at read time

 Better use of CPU cache

 Could be even more optimized to batch locks etc.

 Causes a write to disk	
 Similar to infamous atime update

 Only done each interval (60s) to avoid thrashing

 Could also compare bitmaps (not done currently)

 Executables have to be writable to user currently

 pbitmap results
 with early_fault

 gcc -O2 -S sched.i
 CPU: 1.57s[sd 0.05] -> 1.42s[sd 0.02] -> 1.46s[sd 0.02] -8%

 MEM: 5787MB[sd 143] -> 6968MB [sd 130] -> 6000MB[sd 87] +3.5%

 emacs -batch
 CPU: 0.85s[sd 0.05] -> 0.59s[sd 0.05] -> 0.83s[sd 0.01] -3.3%

 MEM: 10834MB[sd 181] -> 11968B[sd 199] -> 10875MB [sd 142] +1%

 gdb -batch
 CPU: 0.18s[sd 0.02] -> 0.12s[sd 0] -> 0.17s [sd 0.01] -0.05%

 MEM: 2836MB[sd 130] -> 4274MB[sd 86] -> 2900MB [sd 181] +2.2%

 Result

 Experimental results did not help that much

 Improvements from simple pbitmap code only a
few percent

 mmap_slurp helps more, but it has other
drawbacks

 Why did pbitmap not help as much as expected?
 Some speculation

 Readahead algorithms are already pretty good
 Readahead code will already do large IOs after window ramped up

 early_fault is likely a bad idea
 Adds too much waiting for IO

 Cache effects not worth it

 Too synchronous
 Complete prefetch procedure should be background

 Pages accumulate over time currently
 Because the previous run pages always get faulted in too

 And the bitmap write at the end doesn’t know

 Need an aging mechanism

 pbitmap other issues

 Adding new header can break installation disk layout
 But currently preallocation leaves holes on installs

 pbitmap.c only appends/rewrites

 Doesn’t handle shared libraries right now
 Would need ld.so support and a new syscall

 Or just use mmap_slurp_all

 Executable changes
 rpm -V breaks

 Can be handled similar to prelink using rpm scripts	

 May cause larger incremental backups etc.

 Include bitmaps by default in executables?
 Also might need ELF official section numbers?

 Conclusion
 Wake up! presentation is over.

 Should do swapping and demand paging for .text in larger chunks
 Best way to do that still under research

 pbitmaps interesting, but first implementation not full success
 Needs more work

 ftp://ftp.firstfloor.org/pub/ak/pbitmap/ (in quilt format)
 pbitmap.c (to add pbitmap SHDR)

 Questions: andi@firstfloor.org

 Backup

 Future improvements

 Do pure background prefetch without early_fault
 Do more instrumentation where time is spent
 Using seekwatch, blktrace, more systemtap

 Tune prefetch distances

 Tune interaction with standard page cache prefetch

 Do it in user space with "prefetch server"?
 One of the review comments

 Couldn’t force write there	

ELF file I

 Program headers

 # readelf -l /bin/ls

 Elf file type is EXEC (Executable file)

 Entry point 0x402410

 There are 10 program headers, starting at offset 64

 Program Headers:

 Type Offset VirtAddr PhysAddr

 FileSiz MemSiz Flags Align

 PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040

 0x0000000000000230 0x0000000000000230 R E 8

 INTERP 0x0000000000000270 0x0000000000400270 0x0000000000400270

 0x000000000000001c 0x000000000000001c R 1

 [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

 LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000

 0x00000000000150f4 0x00000000000150f4 R E 200000

 LOAD 0x0000000000015d50 0x0000000000615d50 0x0000000000615d50

 0x0000000000000740 0x0000000000000ce0 RW 200000

 DYNAMIC 0x0000000000015de0 0x0000000000615de0 0x0000000000615de0

 0x00000000000001c0 0x00000000000001c0 RW 8

 NOTE 0x000000000000028c 0x000000000040028c 0x000000000040028c

 0x0000000000000020 0x0000000000000020 R 4

 NOTE 0x00000000000002ac 0x00000000004002ac 0x00000000004002ac

 0x0000000000000018 0x0000000000000018 R 4

 GNU_EH_FRAME 0x0000000000013330 0x0000000000413330 0x0000000000413330

 0x000000000000061c 0x000000000000061c R 4

 GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000

 0x0000000000000000 0x0000000000000000 RW 8

 GNU_RELRO 0x0000000000015d50 0x0000000000615d50 0x0000000000615d50

 0x0000000000000280 0x0000000000000278 R 1

 ELF file II
 section headers

 # readelf -S /bin/ls

 There are 31 section headers, starting at offset 0x16a00:

 Section Headers:

 [Nr] Name Type Address Offset

 Size EntSize Flags Link Info Align

 [0] NULL 0000000000000000 00000000

 0000000000000000 0000000000000000 0 0 0

 [1] .interp PROGBITS 0000000000400270 00000270

 000000000000001c 0000000000000000 A 0 0 1

 [2] .note.ABI-tag NOTE 000000000040028c 0000028c

 0000000000000020 0000000000000000 A 0 0 4

 [3] .note.SuSE NOTE 00000000004002ac 000002ac

 0000000000000018 0000000000000000 A 0 0 4

 [4] .hash HASH 00000000004002c8 000002c8

 0000000000000320 0000000000000004 A 6 0 8

 [5] .gnu.hash GNU_HASH 00000000004005e8 000005e8

 0000000000000060 0000000000000000 A 6 0 8

 [6] .dynsym DYNSYM 0000000000400648 00000648

 0000000000000978 0000000000000018 A 7 1 8

 [7] .dynstr STRTAB 0000000000400fc0 00000fc0

 000000000000045d 0000000000000000 A 0 0 1

 [8] .gnu.version VERSYM 000000000040141e 0000141e

 00000000000000ca 0000000000000002 A 6 0 2

 ...

 Key to Flags:

 W (write), A (alloc), X (execute), M (merge), S (strings)

 I (info), L (link order), G (group), x (unknown)

