Predictive bitmaps

An experiment in speeding up Linux
demand paging

Andi Kleen

Caveat

Experiment

Work In progress

Historical background

0 OIld home computer OS didn’t have VM

o Loading ...
o AmigaOs, C64

O Original Unix written for 16bit PDP/11

o Each process had up to three 16bit segments
O Processes were swapped in/out of memory completely

OVM on VAX In the 80ies

0 2-4MB memory
o 2K pages
o Demand Paging on BSD
O Pages are read/created only on first touch
o Complete process swapping still possible

Demand paging

O Linux fully demand paged
o Just VMAs and file handles exist initially
O Even page tables are only created on demand

O Naive view demand paging gives optimal memory use
o More difficult to age pages only needed once

O Access patterns scattered
o Depending on how the program is executed
o Bad for 10 subsystem

O Everything is done one page at a time

o There is readahead, but it often doesn’t help
o Not much batching possible

Pages

00On x86 pages normally 4K
0 8K, 16K, 64K also on other architectures
o Very small for modern memory sizes
o large pages optional, handled outside normal VM in hugetlbfs

O Kernel keeps a page cache

o Pages can be mapped into process address space
o Cached in the background

> write/read just copy to/from them
>mmap (including executable mappings) access directly

o Also used for metadata by many file systems
o All the same radix tree data structure internally

mmaped 10

“Used for executables, shared libraries, other files (with mmap)

O First just virtual address space is reserved

O On fault the kernel creates page table and maps the page in

O Searches the page in the page cache

o When cached just create reference ("minor fault")
o When uncached read from disk ("major fault")

o Even minor fault relatively expensive in CPU time

> Tens of thousands of cycles

O Sophisticated readahead algorithms in page cache

O Detects sequential patterns

o Initiates readahead in the background

o Readahead window is grown automatically
o Special case for full file access

o Limit of pinned pages (2MB by default)

Sample address space layout

cat /proc/self/maps

00400000-00405000 r-xp 00000000 08:03 973466
00604000-00606000 rw-p 00004000 08:03 973466
01c6e000-01c8f000 rw-p 01c6e000 00:00 0
7f89908d8000-7f8990a14000 r-xp 00000000 08:03 1460168
7f8990a14000-7f8990¢13000 ---p 0013c000 08:03 1460168
7f8990¢13000-7f8990c16000 r--p 0013b000 08:03 1460168
7f8990¢16000-7f8990c18000 rw-p 0013e000 08:03 1460168
7f8990¢18000-7f8990c1d000 rw-p 7f8990¢c18000 00:00 O
7f8990¢1d000-7f8990c39000 r-xp 00000000 08:03 1460357
7f8990cee000-7f8990d2d000 r--p 00000000 08:03 324805
[...]

7f8990e35000-7f8990e36000 r--p 00000000 08:03 308435
7f8990e36000-7f8990e38000 rw-p 7f8990e36000 00:00 0
7f8990e38000-7f8990e3a000 rw-p 0001b000 08:03 1460357

/bin/cat
/bin/cat
[heap]

/lib64/libc-2.6.1.s0
/lib64/libc-2.6.1.s0
/lib64/libc-2.6.1.s0

/lib64/libc-2.6.1.s0

/lib64/1d-2.6.1.s0
/usr/lib/locale/en_US.utf8/LC_CTYPE

lusr/lib/locale/en_US.utf8/LC_IDENTIFICATION

/lib64/ld-2.6.1.s0

Trends

OMemory Is getting faster and bigger
o But slower than CPUs.
O Latency doesn’t improve that much
O Hard disks are also getting faster and bigger
o But much slower than memory again
o Latency is still quite poor
O Swapping is slow
O Especially swapping in
O Seeks cost

Disk system overview

Memory controller

T

Controller

SATA Link
(1.5Gbit/s)

80MB/s on
large
transfers

Disk

Tracking/Alignment head

Disk cache
(8-16MB)

Disk transfer rate

Bandwidth - Transfersize

Go8aa

a084a8

40888

jooan -

KiB/=sec

208488

1824k
128k
16k

32k
40896k
dk

G4k

Bk
seq-odk

——''—___——______'_'_'____\—_—'_'_'___,_——'_'__—_‘——__\—\—
1688468

588

1688 156848 286848

2588 3aaa 3508

tine {nsec)

4808

4588

20848

Hard disk facts

O Hard disk reasonably fast
0 80+MB/s on a 7200rpm disk with little seeking
O For sequential transfers

0 On seeky workloads transfer rate drops dramatically

o Depends on spin rate
O But even on fast disks it drops <10MB/s

O Connection to hard disks (SATA) has plenty of bandwidth
o And hard disk has a large buffer (8MB)

O Each seek+transfer reads a complete track into disk memory
o Getting whole track (nearly) free
o Assuming file is not fragmented

O Unit of useful 1O

O Currently around 1MB.
o Growing in each generation

Exception: Solid State Device

[
Flash disks

O Flash disks becoming larger and cheaper
O Expect they will replace HDs at some future point
o Currently still far more expensive and smaller
O Eliminate seek time (mostly)
o Still some command overhead
O But most of them are currently slow for writing
O Unit of useful 10 is still quite large
o Due to erase block sizes on writes
o And requirement to use multiple chips in parallel
O But still HDs will be with us for a long time
O And best flash tuning still under study

Disclaimer

This presentation does not cover flash

How a program is loaded

OELF loader reads the header / PHDRs (few KB only)

OMaps all LOAD segments In
O Not even page tables are setup
o But doesn’t do any IO
O Starts "interpreter” (Id.so)
O Reads headers of the shared libraries
O Maps them in
0 10 only on headers
O Program starts executing

o Each page fault on .text reads a 4K block from disk
O A lot of seeks typically

Executable access pattern

/bin/ls using a systemtap script

cat fault.stp
probe vm.pagefault {
If (task_execname(task_current()) == "Is" && address < 0x100000000) {
printf("%u\n", address);

}
stap fault.stp

#ls

|s faults

300

275 = wee

2z0

225
200

175

120

125

100

I

=0

2o

(:]——q—-h—il*

gdb /bin/Is + run faults

400
¥ e W A
200 < &
j u.‘: i * L
0]]] 1 1
0 250 can Fa0 1000 1250

emacs faults

2000

1800

1600

1400

1200

1000

800

I e
oy L
bt

I I ‘? I t|
0 250 500 750 1000 1250 1500

What happens when we disable demand
paging?

O Simple patch in kernel
oecho 1 > /proc/sys/ivm/mmap_slurp_all
O Always read mapping completely during mmap
o Can be done asynchronously
O Right now synchronously
O Disadvantage
o More memory use
o More 10
o Doesn’t interact well with mmap for normal file 10

mmap_slurp_all results

No GUI programs because they're difficult to time

O All with cold caches (echo 1 > /proc/sys/vm/drop_caches)

Ogcc -O2 -S sched.i

o CPU: 1.57[sd 0.05] -> 1.42[sd 0.02] -10%

o MEM: 5787MB[sd 143] -> 6968MB [sd 130] +17%
O emacs -batch

o CPU: 0.85s[sd 0.05] -> 0.59s[sd 0.05] -31%

o MEM: 10834MBJ[sd 181] -> 11968B[sd 199] +10%
O gdb -batch

o CPU: 0.18s[sd 0.02] -> 0.12s]sd 0]
o MEM: 2836MB[sd 130] -> 4274MB[sd 86]

pbitmaps

O ldea originally from DG/UX

Oecho 1 > /proc/sys/vm/pbitmap_enabled

O0Add a new ELF section on disk that contains one bit for each
program page
O (except anonymous which is not known in advance)

O Bitmap updated on program exit based on the page tables

00On exec prefault all the pages in the bitmap
O Also precreate BSS pages

Implementation

O Based on sys_readahead
O Uses some throttling based on free memory on local node
O Ignores block congestion currently
O Synchronous
o Could use a prefetch thread for larger working sets
O Three phases
O Read bitmap

o Start readahead on bitmap
O Fault pages in

OPHDR vs SHDR

o PHDR would be better but requires relinking
O SHDR is additional seek, but can be added easily
o Using SHDR hack right now

Access rights

0O _FORCEWRITE for bitmap write to mapped executable
o Normally forbidden
O No security implications
O Flag currently exposed to user space

O Executables have to writable by executing uid
o Without it just the last prefetch state is used
O Could force write in kernel
O New in-kernel credentials infrastructure from AFS
O Or just changing uid temporarily
O Need to think through the security implications
O Problem are advanced security models like selinux, AA, smack

pbitmap |

O Optional batching of page faults (early fault sysctl)
o Makes IO synchronous at read time
O Better use of CPU cache
O Could be even more optimized to batch locks etc.

O Causes a write to disk

o Similar to infamous atime update

o Only done each interval (60s) to avoid thrashing
O Could also compare bitmaps (not done currently)
O Executables have to be writable to user currently

pbitmap results

with early_fault

Ogcc -O2 -S sched.i

o0 CPU: 1.57s[sd 0.05] -> 1.42s[sd 0.02] -> 1.46s[sd 0.02] -8%

o MEM: 5787MB[sd 143] -> 6968MB [sd 130] -> 6000MB[sd 87] +3.5%
0 emacs -batch

o CPU: 0.85s[sd 0.05] -> 0.59s[sd 0.05] -> 0.83s[sd 0.01] -3.3%

o MEM: 10834MB[sd 181] -> 11968B[sd 199] -> 10875MB [sd 142] +1%
O gdb -batch

o CPU: 0.18s[sd 0.02] -> 0.12s[sd 0] -> 0.17s [sd 0.01] -0.05%
o MEM: 2836MB[sd 130] -> 4274MBJ[sd 86] -> 2900MB [sd 181] +2.2%

Result

Experimental results did not help that much

Improvements from simple pbitmap code only a
few percent

mmap_slurp helps more, but it has other
drawbacks

Why did pbitmap not help as much as expected?

Some speculation

O Readahead algorithms are already pretty good
O Readahead code will already do large 10s after window ramped up
Oearly fault is likely a bad idea
o Adds too much waiting for IO
o Cache effects not worth it
0 Too synchronous
O Complete prefetch procedure should be background
O Pages accumulate over time currently

O Because the previous run pages always get faulted in too
o And the bitmap write at the end doesn’t know
o Need an aging mechanism

pbitmap other issues

O Adding new header can break installation disk layout
O But currently preallocation leaves holes on installs
O pbitmap.c only appends/rewrites

O Doesn’t handle shared libraries right now
o Would need Id.so support and a new syscall
o Or just use mmap_slurp_all

O Executable changes
orpm -V breaks
o Can be handled similar to prelink using rpm scripts
O May cause larger incremental backups etc.

O Include bitmaps by default in executables?
o Also might need ELF official section numbers?

Conclusion

Wake up! presentation is over

O Should do swapping and demand paging for .text in larger chunks
O Best way to do that still under research

O pbitmaps interesting, but first implementation not full success
O Needs more work

O ftp://ftp.firstfloor.org/pub/ak/pbitmap/ (in quilt format)
O pbitmap.c (to add pbitmap SHDR)

O Questions: andi@firstfloor.org

Backup

Future Improvements

O Do pure background prefetch without early fault
0 Do more instrumentation where time is spent

o Using seekwatch, blktrace, more systemtap
O Tune prefetch distances
o Tune interaction with standard page cache prefetch

O Do it in user space with "prefetch server"?

O One of the review comments
o Couldn’t force write there

ELF file |

Program headers

readelf -I /bin/ls

Elf file type is EXEC (Executable file)
Entry point 0x402410

There are 10 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040

0x0000000000000230 0x0000000000000230 RE 8
INTERP 0x0000000000000270 0x0000000000400270 0x0000000000400270
0x000000000000001c 0x000000000000001c R 1
[Requesting program interpreter: /lib64/Id-linux-x86-64.s0.2]

LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
0x00000000000150f4 0x00000000000150f4 R E 200000
LOAD 0x0000000000015d50 0x0000000000615d50 0x0000000000615d50

0x0000000000000740 0x0000000000000ce0 RW 200000
DYNAMIC 0x0000000000015de0 0x0000000000615de0 0x0000000000615de0
0x00000000000001c0 0x00000000000001cO RW 8

NOTE 0x000000000000028¢ 0x000000000040028c 0x000000000040028¢
0x0000000000000020 0x0000000000000020 R 4
NOTE 0x00000000000002ac 0x00000000004002ac 0x00000000004002ac

0x0000000000000018 0x0000000000000018 R 4

GNU_EH_FRAME 0x0000000000013330 0x0000000000413330 0x0000000000413330
0x000000000000061c 0x000000000000061c R 4

GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RW 8

GNU_RELRO 0x0000000000015d50 0x0000000000615d50 0x0000000000615d50
0x0000000000000280 0x0000000000000278 R 1

ELF file Il

section headers

readelf -S /bin/ls

There are 31 section headers, starting at offset 0x16a00:

Section Headers:

[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align

[0] NULL 0000000000000000 00000000
0000000000000000 0000000000000000 0 0 O

[1] .interp PROGBITS 0000000000400270 00000270
000000000000001c 0000000000000000 A 0 0 1

[2] .note.ABI-tag NOTE 000000000040028c 0000028c
0000000000000020 0000000000000000 A 0O 0 4

[3] .note.SUSE NOTE 00000000004002ac 000002ac
0000000000000018 0000000000000000 A 0O 0 4

[4] .hash HASH 00000000004002c8 000002c8
0000000000000320 0000000000000004 A 6 0 8

[5] .gnu.hash GNU_HASH 00000000004005e8 0000058
0000000000000060 0000000000000000 A° 6 0 8

[6] .dynsym DYNSYM 0000000000400648 00000648
0000000000000978 0000000000000018 A 7 1 8

[7] .dynstr STRTAB 0000000000400fcO 00000fcO
000000000000045d 0000000000000000 A 0O 0 1

[8] .gnu.version VERSYM 000000000040141e 0000141e
00000000000000ca 0000000000000002 A 6 0 2

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings)

Llafa) L Lol ol), Lol A L 1 Ay
o T (ROt tret ot ot) X Tt RITOWH

