
  

Improving Linux development with 
better tools 

Andi Kleen

Oct 2013
Intel Corporation

ak@linux.intel.com



  

Linux complexity growing

V3.6 V3.7 V3.8 V3.9 V3.10 V3.11
13.5

14

14.5

15

15.5

16

16.5

Source lines in Linux kernel

All source code

Kernel version

M
-L

O
C

V2.6.16
V2.6.32

V3.6
V3.7

V3.8
V3.9

V3.10
V3.11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Source lines Linux Kernel core

kernel/ lib

Kernel

M
-L

O
C

V2.6.16V2.6.32 V3.6 V3.7 V3.8 V3.9 V3.10 V3.11
0

0.5

1

1.5

2

2.5

Linux kernel source lines IO

net/ fs/ block/

Kernel version

M
-L

O
C



  

Do we have a problem?

● If we assume number of bugs stays constant 
per line there would be more and more bugs

● If we assume programmers don't get cleverer 
some code may become too complex to 
change/debug



  

Or we can use better tools to find 
bugs

● Static code checker tools
● Dynamic runtime checkers
● Fuzzers/test suites
● Tracers to understand code
● Tools to understand the source



  

Static checkers

● sparse, smatch, coccinelle, clang checker, 
checkpatch, gcc -W/LTO, stanse

● Can check a lot of things, simple mistakes, 
complex problems

● Generic C and kernel specific rules



  

Static checker challenges

● Some are very slow
● False positives

– Often only can do new warnings

– Otherwise too many false positives 

● May need concentrated effort to get false 
positives down
– Only done for gcc/sparse/checkpatch so far  

– Needs both changes to Linux and to checkers



  

Study bug fixes

● “At least 14.8% 24.4% of the sampled bug ∼
fixes are incorrect. Moreover, 43% of the 
incorrect fixes resulted in severe bugs that 
caused crash, hang, data corruption or 
security problems.”

● “How do fixes become bugs” Yin/Yuan et.al.
●  http://opera.ucsd.edu/~zyin2/fse11.pdf
● Great paper, every kernel programmer should read it

● Can new rules for static checkers help? 

http://opera.ucsd.edu/~zyin2/fse11.pdf


  

Coccinelle checker

/// Find &&/|| operations that include the same argument more than once

//# A common source of false positives is when the argument performs a side

//# effect.

@r expression@

expression E;

position p;

@@

(

* E@p

  || ... || E

|

* E@p

  && ... && E

)

@script:python depends on org@

p << r.p;

@@

cocci.print_main("duplicated argument to && or ||",p)



  

Challenge: global checks

● No static checker I found can follow indirect 
calls (“OO in C”, common in kernel)

struct foo_ops { 
      int (*do_foo)(struct foo *obj);
}
foo->do_foo(foo);

● Can be done by using type information
● Misses a lot of potential bugs



  

Lock ordering: lockdep

● Deadlock from lock ordering (“ABBA” bugs) used to be 
common

       T1                             T2

     lock(a);                     lock(b);

     lock(b);                     lock(a);
● Lockdep basically eliminated this problem
● Checks lock ordering, interrupt flags violations at runtime
● Unfortunately scaling problems on large systems



  

Kmemcheck / AddressSanitizer

● Check uninitialized/freed/out of bounds data
● Kmemcheck based on page faults

– Quite slow

● AddressSanitizer using compiler 
instrumentation
– Much faster

– Kernel library seems to exist, but not released yet



  

Thread checkers

● Find data races:
– Shared data accesses not protected by locks

● User space: helgrind, ThreadSanitizer, ..
– ThreadSanitizer compiler based and could be used in kernel

● Problem: kernel does not mark lock-less accesses, which would 
be false positives.

User lock less code:

__atomic_store_n(&foo, 1, __ATOMIC_SEQ_CST);

– Kernel:

foo = 1;

mb();



  

Undefined behavior checker

● UBSan: New gcc/LLVM feature

● Checks undefined C behavior at runtime
– e.g. x << 100, signed integer overflows, …

● Needs special runtime library
● Would need to be ported to kernel



  

Fuzzers

● Use random input data to find bugs
● Trinity is a great tool

– Finds many bugs

● Needs manual model for each syscall

How do we cover all the ioctls/sys/proc files?

● Modern fuzzers around using automatic feedback 
by instrumenting code
– But not for kernel yet
– http://taviso.decsystem.org/making_software_dumber.pdf

http://taviso.decsystem.org/making_software_dumber.pdf


  

The biggest challenge

● How to run all these tools on every new patch:
– Cannot ask every developer to use all of them

● Static checkers are relatively easy
– But can we get beyond just deltas for new code?

● But how to run the dynamic tools?



  

Test suites

● Ideally all kernel code would come with a test 
suite
– Then someone could run all the dynamic checkers

● Difficult for hardware drivers
● LKP, kernel unit tests, tools/* limited
● Need a real unit testing framework



  

Coverage

● Kernel gcov can be used to test coverage of 
test suites

● Should be used much more widely



  

Tracers

● Long beyond “real men don't use debuggers”
– Linux has good debuggers these days (kgdb etc.)

● But how to debug hard to reproduce bugs
– Ideal enough information to debug on first trigger

● Tracing:
– Low overhead instrumentation

– When problem triggers dump data



ftrace: function tracer

• Trace all functions in the kernel for PID
#  trace-cmd record -p function -e sched_switch -P $(pidof firefox-bin)
  plugin function
disable all
enable sched_switch
path = /sys/kernel/debug/tracing/events/sched_switch/enable
path = /sys/kernel/debug/tracing/events/*/sched_switch/enable
path = /sys/kernel/debug/tracing/events/sched_switch/enable
path = /sys/kernel/debug/tracing/events/*/sched_switch/enable
Hit Ctrl^C to stop recording
….
# trace-cmd report
…
     firefox-bin-13822 [002] 36628.537061: function:             sys_poll
     firefox-bin-13822 [002] 36628.537062: function:                poll_select_set_timeout
     firefox-bin-13822 [002] 36628.537062: function:                   ktime_get_ts
     firefox-bin-13822 [002] 36628.537062: function:                      timekeeping_get_ns
     firefox-bin-13822 [002] 36628.537063: function:                      set_normalized_timespec
     firefox-bin-13822 [002] 36628.537063: function:                   timespec_add_safe
     firefox-bin-13822 [002] 36628.537063: function:                      set_normalized_timespec
     firefox-bin-13822 [002] 36628.537064: function:                do_sys_poll
     firefox-bin-13822 [002] 36628.537064: function:                   copy_from_user
     firefox-bin-13822 [002] 36628.537065: function:                      might_fault
     firefox-bin-13822 [002] 36628.537065: function:                         _cond_resched
     firefox-bin-13822 [002] 36628.537065: function:                            should_resched
     firefox-bin-13822 [002] 36628.537065: function:                               need_resched
     firefox-bin-13822 [002] 36628.537066: function:                                  test_ti_thread_flag
…

All kernel functions 
executed



kernelshark



  

Ftrace / kernelshark

● Can dump on events / oops / custom triggers
● But still too much overhead in many cases to 

run always during testing

● Lots of other tracers not mentioned here
– systemtap, perf, k/uprobes, ...



  

Intel Processor Trace (PT)

● Upcoming Intel CPU feature
● Traces all branches with low overhead
● Will be supported in perf and gdb
● Can be used as “Flight Recorder”

● Tells you “how you got there” on a problem



Biggest challenge with tracers

● They generate too much data

● Need better tools to analyze the data
● Can machine learning/analytics help?



  

Understanding source code

● Often first problem is finding the code
● grep/cscope work great for many cases
● But do not understand indirect pointers (OO in C model 

used in kernel): Give me all “do_foo” instances
struct foo_ops { 
      int (*do_foo)(struct foo *obj);
} =  { .do_foo = my_foo };
foo->do_foo(foo)

● Would be great to have a cscope like tool that 
understands this based on types/initializers



  

Conclusion

● Linux has a lot of great tools for making kernel 
development easier

● We need them to keep up with the growing 
complexity

● But still many improvements possible

● Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Kernelshark zoom
	Slide 24
	Slide 25

