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Linux complexity growing
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Do we have a problem?

● If we assume number of bugs stays constant 
per line there would be more and more bugs

● If we assume programmers don't get cleverer 
some code may become too complex to 
change/debug



  

Or we can use better tools to find 
bugs

● Static code checker tools
● Dynamic runtime checkers
● Fuzzers/test suites
● Tracers to understand code
● Tools to understand the source



  

Static checkers

● sparse, smatch, coccinelle, clang checker, 
checkpatch, gcc -W/LTO, stanse

● Can check a lot of things, simple mistakes, 
complex problems

● Generic C and kernel specific rules



  

Static checker challenges

● Some are very slow
● False positives

– Often only can do new warnings

– Otherwise too many false positives 

● May need concentrated effort to get false 
positives down
– Only done for gcc/sparse/checkpatch so far  

– Needs both changes to Linux and to checkers



  

Study bug fixes

● “At least 14.8% 24.4% of the sampled bug ∼
fixes are incorrect. Moreover, 43% of the 
incorrect fixes resulted in severe bugs that 
caused crash, hang, data corruption or 
security problems.”

● “How do fixes become bugs” Yin/Yuan et.al.
●  http://opera.ucsd.edu/~zyin2/fse11.pdf
● Great paper, every kernel programmer should read it

● Can new rules for static checkers help? 

http://opera.ucsd.edu/~zyin2/fse11.pdf


  

Coccinelle checker

/// Find &&/|| operations that include the same argument more than once

//# A common source of false positives is when the argument performs a side

//# effect.

@r expression@

expression E;

position p;

@@

(

* E@p

  || ... || E

|

* E@p

  && ... && E

)

@script:python depends on org@

p << r.p;

@@

cocci.print_main("duplicated argument to && or ||",p)



  

Challenge: global checks

● No static checker I found can follow indirect 
calls (“OO in C”, common in kernel)

struct foo_ops { 
      int (*do_foo)(struct foo *obj);
}
foo->do_foo(foo);

● Can be done by using type information
● Misses a lot of potential bugs



  

Lock ordering: lockdep

● Deadlock from lock ordering (“ABBA” bugs) used to be 
common

       T1                             T2

     lock(a);                     lock(b);

     lock(b);                     lock(a);
● Lockdep basically eliminated this problem
● Checks lock ordering, interrupt flags violations at runtime
● Unfortunately scaling problems on large systems



  

Kmemcheck / AddressSanitizer

● Check uninitialized/freed/out of bounds data
● Kmemcheck based on page faults

– Quite slow

● AddressSanitizer using compiler 
instrumentation
– Much faster

– Kernel library seems to exist, but not released yet



  

Thread checkers

● Find data races:
– Shared data accesses not protected by locks

● User space: helgrind, ThreadSanitizer, ..
– ThreadSanitizer compiler based and could be used in kernel

● Problem: kernel does not mark lock-less accesses, which would 
be false positives.

User lock less code:

__atomic_store_n(&foo, 1, __ATOMIC_SEQ_CST);

– Kernel:

foo = 1;

mb();



  

Undefined behavior checker

● UBSan: New gcc/LLVM feature

● Checks undefined C behavior at runtime
– e.g. x << 100, signed integer overflows, …

● Needs special runtime library
● Would need to be ported to kernel



  

Fuzzers

● Use random input data to find bugs
● Trinity is a great tool

– Finds many bugs

● Needs manual model for each syscall

How do we cover all the ioctls/sys/proc files?

● Modern fuzzers around using automatic feedback 
by instrumenting code
– But not for kernel yet
– http://taviso.decsystem.org/making_software_dumber.pdf

http://taviso.decsystem.org/making_software_dumber.pdf


  

The biggest challenge

● How to run all these tools on every new patch:
– Cannot ask every developer to use all of them

● Static checkers are relatively easy
– But can we get beyond just deltas for new code?

● But how to run the dynamic tools?



  

Test suites

● Ideally all kernel code would come with a test 
suite
– Then someone could run all the dynamic checkers

● Difficult for hardware drivers
● LKP, kernel unit tests, tools/* limited
● Need a real unit testing framework



  

Coverage

● Kernel gcov can be used to test coverage of 
test suites

● Should be used much more widely



  

Tracers

● Long beyond “real men don't use debuggers”
– Linux has good debuggers these days (kgdb etc.)

● But how to debug hard to reproduce bugs
– Ideal enough information to debug on first trigger

● Tracing:
– Low overhead instrumentation

– When problem triggers dump data



ftrace: function tracer

• Trace all functions in the kernel for PID
#  trace-cmd record -p function -e sched_switch -P $(pidof firefox-bin)
  plugin function
disable all
enable sched_switch
path = /sys/kernel/debug/tracing/events/sched_switch/enable
path = /sys/kernel/debug/tracing/events/*/sched_switch/enable
path = /sys/kernel/debug/tracing/events/sched_switch/enable
path = /sys/kernel/debug/tracing/events/*/sched_switch/enable
Hit Ctrl^C to stop recording
….
# trace-cmd report
…
     firefox-bin-13822 [002] 36628.537061: function:             sys_poll
     firefox-bin-13822 [002] 36628.537062: function:                poll_select_set_timeout
     firefox-bin-13822 [002] 36628.537062: function:                   ktime_get_ts
     firefox-bin-13822 [002] 36628.537062: function:                      timekeeping_get_ns
     firefox-bin-13822 [002] 36628.537063: function:                      set_normalized_timespec
     firefox-bin-13822 [002] 36628.537063: function:                   timespec_add_safe
     firefox-bin-13822 [002] 36628.537063: function:                      set_normalized_timespec
     firefox-bin-13822 [002] 36628.537064: function:                do_sys_poll
     firefox-bin-13822 [002] 36628.537064: function:                   copy_from_user
     firefox-bin-13822 [002] 36628.537065: function:                      might_fault
     firefox-bin-13822 [002] 36628.537065: function:                         _cond_resched
     firefox-bin-13822 [002] 36628.537065: function:                            should_resched
     firefox-bin-13822 [002] 36628.537065: function:                               need_resched
     firefox-bin-13822 [002] 36628.537066: function:                                  test_ti_thread_flag
…

All kernel functions 
executed



kernelshark



  

Ftrace / kernelshark

● Can dump on events / oops / custom triggers
● But still too much overhead in many cases to 

run always during testing

● Lots of other tracers not mentioned here
– systemtap, perf, k/uprobes, ...



  

Intel Processor Trace (PT)

● Upcoming Intel CPU feature
● Traces all branches with low overhead
● Will be supported in perf and gdb
● Can be used as “Flight Recorder”

● Tells you “how you got there” on a problem



Biggest challenge with tracers

● They generate too much data

● Need better tools to analyze the data
● Can machine learning/analytics help?



  

Understanding source code

● Often first problem is finding the code
● grep/cscope work great for many cases
● But do not understand indirect pointers (OO in C model 

used in kernel): Give me all “do_foo” instances
struct foo_ops { 
      int (*do_foo)(struct foo *obj);
} =  { .do_foo = my_foo };
foo->do_foo(foo)

● Would be great to have a cscope like tool that 
understands this based on types/initializers



  

Conclusion

● Linux has a lot of great tools for making kernel 
development easier

● We need them to keep up with the growing 
complexity

● But still many improvements possible

● Questions?
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