
Overview of the x86-64 kernel

Andi Kleen, SUSE Labs, Novell
ak@suse.de

Linux Bangalore 2004



 What’s wrong?
 

  x86-64, x86_64 

  AMD64 

  EM64T 

  IA32e 

  IA64 

  x64, CT



 Names
 

  x86-64, x86_64 

  AMD64 

  EM64T 

  IA32e 

  x64 

  CT



 Basics
 

  64bit extended x86 architecture 

  Can be used with 32bit OS too
      But 64bit OS is better 

  Originally from AMD
 

  Shipping by AMD and Intel
      Servers and desktops and even laptops
 

  Announced by Transmeta and VIA



 History of the Linux port 
 

  SUSE Labs project 

  Started on simulators in 2000
      Fork from i386 

  Was running on early silicon by AMD
 

  First betas in 2002  

  Shipping product (SLES8) in 2003 
 

  Merged into 2.4 in 2002



 Long mode
 

  64bit addressing support 

  64bit instructions 

  8 more integer and SSE2 registers
      eax -> rax
      r8-r15, xmm8-xmm15 

  RIP relative addressing mode
      Faster shared libraries 

  Compat mode to run 32bit
      Practically no performance penalty compared to 32bit OS



 An oops
 

 general protection fault: 0000 [1] 
 CPU 0 
 Modules linked in: ....
 Pid: 7026, comm: insmod Tainted: 
 RIP: 0010:[<ffffffffa073a000>] <ffffffffa073a000>{:toops3:f2+0}
 RSP: 0000:000001000fc79f40  EFLAGS: 00010216
 RAX: ffffffffa073a010 RBX: ffffffff803c4da0 RCX: 0000000000101000
 RDX: 0000000000000000 RSI: feedbabedeadbeef RDI: feedbabedeadbeef
 RBP: ffffffffa073a500 R08: 00000100018af010 R09: 000001001ff6d560
 R10: 000001001ff6d570 R11: 0000000000000000 R12: ffffffff803c4cc0
 R13: ffffffff803c4cc0 R14: 000000000000000f R15: ffffffff8013cb00
 FS:  0000002a9588f4c0(0000) GS:ffffffff804c6480(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
 CR2: 000000000051b000 CR3: 0000000000101000 CR4: 00000000000006e0
 Process insmod (pid: 7026, threadinfo 000001000fc78000, task 000001001d7610b0)
 Stack: ffffffffa073a019 000001001d7610b0 ffffffff80110e47 ffffffff8013cb00 
        000000000000000f ffffffff803c4cc0 ffffffff803c4cc0 ffffffffa073a500 
        ffffffff803c4da0 0000000000000000 
 Call Trace:<ffffffffa073a019>{:toops3:crash+9} <ffffffff80110e47>{child_rip+8} 
        <ffffffff8013cb00>{msleep+0} <ffffffffa073a010>{:toops3:crash+0} 
        <ffffffff80110e3f>{child_rip+0}  

 Code: c6 07 01 c3 66 66 66 90 66 66 66 90 66 66 66 90 48 83 ec 08 
 RIP <ffffffffa073a000>{:toops3:f2+0} RSP <000001000fc79f40>
  done 

    0:   c6 07 01                movb   $0x1,(%rdi)
    3:   c3                      retq   



 Some myths 
 

  64bit is bigger
      Depends on what CPU you optimize for
      Normally <~10% difference
      Sometimes code is even smaller 

  64bit is slower
      Additional registers
      New modern ABI
      SSE2 

  I don’t need 64bit, I have less than 4GB of RAM
      32bit limit in practice around 2GB
      Virtual address space fragments (e.g. thread stacks)
      IO memory hole needs physical space below 4GB



 Basics
 

  Started as a copy of arch/i386, include/asm-i386 

  Low level assembly code rewritten
 

  Code heavily changed for 64bit
      And only support modern chipsets
 

  Lots of old cruft removed
      Workarounds for old hardware bugs
      No DMI checks so far
      No APM, no vm86, ... 

  Some code shared: MTRR, cpufreq, swiotlb, ...



 New features
 

  NUMA
      Based on generic NUMA infrastructure in VM
      Originally for Opteron only, now also supports ACPI SRAT
      NUMA API 

  32bit emulation 
      Based on code from other 64bit ports
 

  IOMMU 

  4level page tables
      Before that 512GB limit per process
 

  Redesigned machine check handling



 Current state
 

  Widely used 

  2.4 in maintenance mode 

  2.6 production and development
 



 Porting: basics
 

  Code must be 64bit clean 

  long is 64bit now, int stays 32bit
 

  Pointers in long, not int
       different from WIN64 

  -Wall cleanness is a good start
 



 Porting in userspace: /lib64
 

  All 64bit libraries are in lib64
      32bit stays in lib
      Special compat packages for old libraries
 

  Makefiles often need to be fixed 
      configure --enable-lib-suffix=64
 

  Not perfect: no include64, bin64
      Best to have separate library RPMS
      RPM versions should match 



 Porting: IOMMU basics
 

  Some devices cannot address all memory 
      Kick your hardware people if it happens with new hardware
 

  Driver must map buffers before passing them to hardware
      Replaces __va, virt_to_bus
      And free them of course
      Should be used always
 

  Explicit cache flushing
 

  Only works for devices with at least 4GB address space
      Smaller ones need pci_alloc_consistent()



 Porting: IOMMU implementation on x86-64
 

  AMD AGP GART IOMMU 
      Not a real IOMMU...
      Uses AGP GART functionality in the CPU northbridge
      Reuses half of the AGP aperture by default
      Size depends on BIOS or can be mapped over memory
 

  Slower swiotlb on Intel
      And some buggy AMD chipsets
      Does memory copies
      Slow 

  Remap space is limited
      Sometimes only 64MB
      Can be tuned with kernel command line options and in BIOS
      Best to limit yourself and handle overflows



 Porting: IOMMU functions
 

  pci_set_dma_mask 

  pci_alloc_consistent for IO memory      
      pci_free_consistent
 

  pci_map_sg/pci_map_single for dynamic mappings
      Need 4GB dma mask or better 

  pci_dma_sync_{single,sg}_for_{device,cpu}



 Porting: IOMMU notes
 

  Check and handle errors
      Especially in block drivers!
      pci_map_sg returns 0 on error
      pci_dma_mapping_error for pci_map_single
 

  dma_* can be used too for generic bus support
      pci_alloc_consistent -> dma_alloc_coherent
      pci_map_single -> dma_map_single
      pci_map_sg -> dma_map_sg
      pci_dma_mapping_error -> dma_mapping_error
 

  Documentation/DMA-mapping.txt
 



 Porting: 32bit emulation basics
 

  32bit has separate libraries in user space 

  32bit and 64bit always run in different processes
 

  Kernel has a 32bit emulation layer
 

  Kernel converts all system calls
      {fs,net,kernel}/compat.c
 

  ioctls in drivers need special conversion
 

  Avoid message passing over read/write



 Porting: 32bit ioctl handler
 

  Needed for x86_64, ppc64, s390x, ia64, mips64, parisc64 

  Kernel does it centrally for most of its own ioctls
      fs/compat-ioctl.{c,h}
 

  Drivers can register own ioctl handler
      register_ioctl32_conversion
 

  Passed through if compatible or converted
 

  Conversion of structures on user stack
      Converted from 64bit to compat_* types
      Access using normal *_user functions



 What needs conversion?
 

  long 

  pointers
 

  long long / u64 without natural alignment
      Different from RISC ports!
 

  Some fundamental types
      dev_t, inode_t, time_t, ... 



 ioctl conversion functions
 

  #include <linux/compat.h> 

  register_ioctl32_conversion()
      Need unique number
      Use _IO* macros to define ioctls 

  copy_in_user()
 

  compat_alloc_userspace()
 

  sys_ioctl()
 

  compat_ptr()



 32bit conversion example
 

 #include <linux/compat.h> 

 struct ppp_idle32 {
         compat_time_t xmit_idle;
         compat_time_t recv_idle;
 }; 

 #define PPPIOCGIDLE32           _IOR(’t’, 63, struct ppp_idle32) 

 static int ppp_gidle(unsigned int fd, unsigned int cmd, unsigned long arg)
 {
         struct ppp_idle __user *idle;
         struct ppp_idle32 __user *idle32;
         __kernel_time_t xmit, recv;
         int err; 

         idle = compat_alloc_user_space(sizeof(*idle));
         idle32 = compat_ptr(arg); 

         err = sys_ioctl(fd, PPPIOCGIDLE, (unsigned long) idle); 

         if (!err) {
                 if (get_user(xmit, &idle->xmit_idle) ||
                     get_user(recv, &idle->recv_idle) ||
                     put_user(xmit, &idle32->xmit_idle) ||
                     put_user(recv, &idle32->recv_idle))
                         err = -EFAULT;
         }
         return err;
 } 



 References
 

  /usr/src/linux/arch/x86_64, include/asm-x86_64/ 

  http://www.x86-64.org
 

  /usr/src/linux/Documentation/DMA-mapping.txt
 

  discuss@x86-64.org
 

  Questions?



 Backups
 



 Porting issues: 32bit code with 64bit apps
 

  Direct linking not possible 

  All conversion is in the kernel 

  Recommended method: several processes, RPC 
 

  Make sure your RPC encoding doesn’t assume wordsize
 

  Example: Konqueror using 32bit plugins with DCOP
 


