

Mental models for modern program
tuning

Andi Kleen

Intel Corporation

Jun 2016

How can we see program
performance?

Important to get the common ants fast

VS

Army of antsHigh level

“Preliminary optimization is the root of all evil”
– Donald Knuth, 1974, “Structured programing with gotos”

“We should forget about small efficiencies, say
about 97% of the time: premature optimization
is the root of all evil. Yet we should not pass
up our opportunities in that critical 3%”

Flat profiles

● Is it only for 3%?
– Often not true for complex workloads with flat

performance profile

Strategy

● Have to be aware of performance when writing
code
– At least for critical paths

– Otherwise it needs too many changes later to get
fast

– Also need a model to understand results

Mental model

vs

vs

Latency numbers every programer should know

L1 cache reference 0.5ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 100 ns 20x L2 cache, 200x L1

Compress 1K bytes with snappy 3000 ns

Send 1K bytes over 1Gbps network 10,000 ns 0.01 ms

Read 4K randomly from SSD 150,000 ns 0.15 ms

Read 1MB sequentially from memory 250,000 ns 0.25 ms

Round trip within same data center 500,000 ns 0.5 ms

Read 1MB sequentially from SSD 1,000,000 ns 1ms 4x memory

Disk seek 10,000,000 ns 10 ms 20x data center r-t

Read 1MB sequentially from disk 20,000,000 ns 20 ms 20x SSD

Send packet CA->Netherlands->CA 150,000,000 ns 150 ms

Originally from Peter Norvig. Generic numbers. Does not represent a particular part.

Critical bottleneck

CPU bound

Could be bound on other things:

IO

Network

GPU

For finding bottlenecks in other resources see Brendan Gregg's
talks

What is CPU bound?

● Computation

● Accessing memory
● Communicating with other cores

What versus where

● Counting
– What accurately but not where

– Look at ratios

● Sampling
– Losely where, but not always what

– Need more than just cycles

● Tracing
– Where very accurately, but lots of data

– Not necessarily what

Sampling skid

● Sampling may not find the exact place
● Use Precise Event Based Sampling (:pp) to

minimize skid
– Does not work in VMs

Event

Sample

More instructions

Skid

Instructions

perf record -e cycles:pp ..

More PEBS events
available, see ocperf list
output

Event1 Event2 Event3

Event1 Event2 Event3

Fast
Sample

 Fast
Sample

Slow sampling does not accurately
measure fast events

PEBS Interrupt less sampling allows
fast sampling at reasonable overhead

Feature in recent Linux perf 4.1+
perf record -c 25000 –no-time ...

Time

Time

Fast sampling
versus slow
sampling

Ratios can mislead

% perf stat -e cache-references,cache-misses ./fib

fib 100000 = 13120482006059434805

 Performance counter stats for './fib':

 23,283 cache-references

 8,483 cache-misses # 36.434 % of all cache refs

 0.000535555 seconds time elapsed

But Fibonacci is not using memory much

Use TopDown instead to find real bottleneck

TopDown methology

Use performance counter measurement to find bottleneck
in CPU pipeline

Only showing
cache nodes

TopDown output

toplev tool in
http://github.com/
andikleen/pmu-
tools

Basic performance unit

● Less than that is not cheaper

CPU cache lines 64 bytes

Pages 4K / 2MB (1GB)

Network IO packets Hundreds of bytes

Network IO connection Thousands of bytes

Block IO Several MB

Simplified cache model

● 64byte cache lines
● Local

– Temporal

– Predictible

– Cold

● Communication
– Shared read-only

– Bouncing

Temporal

● What we recently used
● What fits in caches of our working set

● Best performance if working set fits

Cold

● Not temporal, large or thrashing
● Can be quite slow: several orders of magnitude

– Some optimizations possible: NUMA locality or
interleaving using libnuma

● When data is not reused can use non temporal
loads/stores to avoid polluting caches
– But only for very large data sets

Predictible

● Large, not hot
● But predictible access pattern
● Cache can prefetch in background and hide

latency

● Arrays are usually good, pointers can be bad

Prefetchers 101

● Only work for larger amounts of data
– Need training

● Support strides and forward/backward stream
● Multiple streams supported, but only small

number

9432 871 65

Stride

Kernel software prefetching

– Event loop

offset += pread(shared_fd, buffer, size, offset)

vs

– read(private_fd, buffer, size);

Hot loop model

● We understand everything about the hot loop
● Can use cache blocking and other tricks to

optimize temporal locality for everything
– Compiler may even be able to do automatically

● Unfortunately a lot of software is not like that

Library model

● Called by (random) other code which has own
cache foot print

● Tradeoff: more computation or more
caching/table lookup
– Tragedy of the commons: if all together use too

much everyone suffers

● Non composable problem
– Everything depends on everything

Longer essay on the topic: http://halobates.de/blog/p/227

Cache friendly libraries

● May need to optimize for cache cold
– Minimize foot print

– But only if memory is not cheaper

● Cluster hot fields in data structures together.
● Support big and small versions

– Add knobs for foot print

– Could use automatic tuning

Cache coloring

● Caches can store addresses at specific
multiplies of 64 only in limited number of
positions

Inefficient use of cache

● Metadata always at same offset in data page
– Only uses fraction of the cache for pointers

– Can use separate packed metadata instead

Page Page

0: Pointer 0: Pointer0: Pointer 0: Pointer

Page Page

Next
Data

Next
Data

How to find cache issues

● First check TopDown Memory Bound
● Count cache misses

– perf stat -e cache-references,cache-misses ...

● Sample L3 cache misses:
– ocperf.py record -e \

mem_load_uops_l3_miss_retired.local_dram:pp ...

● Sample addresses

– perf mem record …

http://github.com/andikleen/pmu-tools
for ocperf

http://github.com/andikleen/pmu-tools

Automated icache tuning

● Some cache problems (like instruction cache) can
be automatically optimized
– Indicated by FrontendBound in TopDown

– Split hot and cold code using compiler profile feedback

– Can be done automatically from profiles without
instrumentation

http://github.com/google/autofdo with gcc 5.x+ base autofdo pgo
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

gcc 5 compile performance
with profile feedback

http://github.com/google/autofdo

Noisy neighbour problem

● Caches can be shared resources
● Other processes/threads/VMs cause slowdowns

● Co-locate processes with different characteristics
– For example low IPC and high IPC

● New hardware capabilities:
– Cache QoS monitoring

– Cache QoS enforcement

L3 cache occupancy measurements

Measure L3 cache occupancy
for a process/container/VM

Gives us the upper consumption
and avoids co-placement
problems

Requires Intel Xeon E5 v3 and
Linux 4.1+

0 0.5 1 1.5 2 2.5 3 3.5
0

20000000

40000000

60000000

80000000

100000000

120000000

multichase L3 occupancy

Time

L
3

ca
ch

e
 b

yt
e

s

Communication

● Communication happens when a core
accesses a cache line written by another core

● Like message passing in a fast network

Finding Communication

● Check for TopDown Contested_Accesses

● Find with:

ocperf.py stat -e \
mem_load_uops_l3_hit_retired.xsnp_hitm ...

ocperf.py record -g -e \
mem_load_uops_l3_hit_retired.xsnp_hitm:pp …

– Or similar event name

 SMT thread<->other thread
 Really fast

 Core<->other Core in socket
 Other socket

 Latency depends on home address
 Possibly multiple hops

Tool to find latencies:
Intel Latency Checker

http://www.intel.com/software/mlc

Latency levels

Thread Core Remote 1 Remote 2
0

2

4

6

8

10

12

14

16

18

Cache2Cache Ratios

Cache queueing effects

● Cache communication is message passing
– Has ordering requirements

● Can cause conflicts and queue delays
– Gets worse with more and more cores

threads1 2 3 4 5 6 7 8 16 24 32 40 48 56 64 72 80 88
0

500

1000

1500

2000

2500

3000

3500

Time to do 250k increments on shared counter

Cache messaging optimizations

● Avoid unnecessary round trips
● Avoid false sharing
● Prefer nearby thread/core/socket
● Design for load, use backoffs
● Avoid thundering herds

Example

 global_flag = true;

 vs

 if (!global_flag)
 global_flag = true;

Classic Lock optimization

● Start with big lock per subsystem
● Push down to fine grained data objects to lower

contention
● End goal: lock per cache line?

Lock overhead

● Locks have overhead even when cache line is
not contended
– Can depend on nearby operations (sometimes slow)

– Can be 3 orders of magnitude delta even when not
contended

● Too many locks can be costly
– “Locks as red tape”

Another problem with small locks:

Lock region size versus work

Lock acquisition needs to amortize communication

Requires doing enough work inside lock

Lock stability

● Short lock regions can be instable
– Small timing variations can cause big performance

changes

– Due to timing and queueing effects on the locks and
data

● Rule of thumb: critical section at least 200us for
stable behavior
– That is a lot of instructions!

In depth paper:
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/xeon-lock-scaling-
analysis-paper.pdf

Library design for lock batching

● Design interfaces to process multiple
operations in the same call
– Allows doing more work in lock regions

– Improves temporal locality

Lock elision

● Can use hardware transactional memory
support with TSX to do lock elision

● Use coarse lock and let the hardware figure it
out

● Lock cache line stays shared
– Only uses real lock on real conflict

– Still need to minimize common data conflicts

Available on Intel Xeon v4 or Xeon E7 v3

http://www.intel.com/software/tsx

Measure: perf stat -T ...
Find aborts: perf record -e tx-aborts:pp ….

Microbenchmarks are difficult

● CPU Frequency can change
● Accurate timing is tricky
● Compilers are good at optimizing them away
● Caching effects are difficult to reproduce

– For example calling library with always the same
input always hits cache

– Calling always with different input thrashes caches

– Both is unrealistic

Automatic micro benchmarking

● Using timed last branch records in Skylake
CPUs

● Sample real workload and get cycle count of 32
program blocks per sample

$ perf record -b …
$ perf report

Needs Linux perf 4.3+

Indepth articles:
http://lwn.net/Articles/680985/

http://lwn.net/Articles/680996

http://lwn.net/Articles/680985/

Tracing

● Using Processor Trace (PT)
– Hardware feature inBroadwell/Skylake

● Supported in Linux perf since Linux 4.1

– Fine grained execution trace with time stamps

$ perf record -e intel_pt// …
$ perf script --ns --itrace=cr \
-F time,event,callindent,addr,sym

For older kernels
http://github.com/andikleen/simple-pt

Assembler Tracing

● Using Processor Trace (PT)
● Timing cycle accurate to ~4 basic blocks on

Skylake

$ perf record -e intel_pt// …
$ perf script --ns --itrace=i0ns \
-F time,pid,comm,ip,asm

Requires patched perf for disassembler

Indepth article on PT:
http://lwn.net/Articles/648154/

Summary

● Focus on critical bottlenecks
● Remember the order of magnitudes
● Cache communication is message passing
● Lock coarsely
● Measure properly

● http://github.com/andikleen/pmu-tools
● http://halobates.de

http://github.com/andikleen/pmu-tools
http://halobates.de/

Backup

Autotuning

● Add knobs to size tables and algorithms and
use an auto tuner to find best trade off for
whole program
– Can adapt to changing circumstances

– Use generic optimization frameworks

ATLAS: Automatically tuned linear algebra
kernels

http://github.com/jansel/opentuner

Cache events

● Communication:

– mem_load_uops_l3_hit_retired.xsnp_hit

– mem_load_uops_l3_hit_retired.xsnp_hitm

– mem_load_uops_l3_hit_retired.xsnp_miss

● Locality:

– mem_load_uops_retired.l1_miss / hit

– mem_load_uops_retired.l2_miss / hit

– mem_load_uops_retired.l3_miss / hit

● Can be counted or sampled with ocperf in pmu-tools

Linked lists versus ropes

A FEDB C

A B C D D E F

VS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

