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How can we see program 
performance?

Important to get the common ants fast

VS

Army of antsHigh level



  

“Preliminary optimization is the root of all evil”
– Donald Knuth, 1974, “Structured programing with gotos”



  

“We should forget about small efficiencies, say 
about 97% of the time: premature optimization 
is the root of all evil. Yet we should not pass 
up our opportunities in that critical 3%”



  

Flat profiles

● Is it only for 3%?
– Often not true for complex workloads with flat 

performance profile



  

Strategy

● Have to be aware of performance when writing 
code
– At least for critical paths

– Otherwise it needs too many changes later to get 
fast

– Also need a model to understand results



  

Mental model

vs

vs



Latency numbers every programer should know

L1 cache reference     0.5ns

Branch mispredict     5 ns

L2 cache reference     7 ns 14x L1 cache

Mutex lock/unlock   25 ns

Main memory reference  100 ns 20x L2 cache, 200x L1

Compress 1K bytes with snappy 3000 ns

Send 1K bytes over 1Gbps network 10,000 ns 0.01 ms

Read 4K randomly from SSD 150,000 ns 0.15 ms

Read 1MB sequentially from memory 250,000 ns 0.25 ms

Round trip within same data center 500,000 ns 0.5 ms

Read 1MB sequentially from SSD 1,000,000 ns 1ms      4x memory

Disk seek 10,000,000 ns 10 ms  20x data center r-t

Read 1MB sequentially from disk 20,000,000 ns 20 ms  20x SSD

Send packet CA->Netherlands->CA 150,000,000 ns 150 ms

Originally from Peter Norvig. Generic numbers. Does not represent a particular part.



  

Critical bottleneck

CPU bound

Could be bound on other things:

IO

Network

GPU

For finding bottlenecks in other resources see Brendan Gregg's 
talks



  

What is CPU bound?

● Computation

● Accessing memory
● Communicating with other cores



  

What versus where

● Counting
– What accurately but not where

– Look at ratios

● Sampling
– Losely where, but not always what

– Need more than just cycles

● Tracing
– Where very accurately, but lots of data

– Not necessarily what



  

Sampling skid

● Sampling may not find the exact place 
● Use Precise Event Based Sampling (:pp) to 

minimize skid 
– Does not work in VMs

Event

Sample

More instructions

Skid

Instructions

perf record -e cycles:pp ..

More PEBS events 
available, see ocperf list 
output



Event1 Event2 Event3

Event1 Event2 Event3

Fast 
Sample

 Fast 
Sample

Slow sampling does not accurately 
measure fast events

PEBS Interrupt less sampling allows 
fast sampling at reasonable overhead

Feature in recent Linux perf 4.1+
perf record -c 25000 –no-time ...

Time

Time

Fast sampling 
versus slow 
sampling



  

Ratios can mislead

% perf stat -e cache-references,cache-misses ./fib

fib 100000 = 13120482006059434805

 Performance counter stats for './fib':

            23,283      cache-references                                            

             8,483      cache-misses              #   36.434 % of all cache refs    

       0.000535555 seconds time elapsed

But Fibonacci is not using memory much

Use TopDown instead to find real bottleneck



  

TopDown methology

Use performance counter measurement to find bottleneck 
in CPU pipeline

Only showing 
cache nodes



  

TopDown output

toplev tool in
http://github.com/
andikleen/pmu-
tools



  

Basic performance unit

● Less than that is not cheaper

CPU cache lines 64 bytes

Pages 4K / 2MB (1GB)

Network IO packets Hundreds of bytes

Network IO connection Thousands of bytes

Block IO Several MB



  

Simplified cache model

● 64byte cache lines
● Local

– Temporal

– Predictible

– Cold

● Communication
– Shared read-only

– Bouncing



  

Temporal

● What we recently used
● What fits in caches of our working set

● Best performance if working set fits



  

Cold

● Not temporal, large or thrashing
● Can be quite slow: several orders of magnitude

– Some optimizations possible: NUMA locality or 
interleaving using libnuma

● When data is not reused can use non temporal 
loads/stores to avoid polluting caches
– But only for very large data sets



  

Predictible

● Large, not hot
● But predictible access pattern
● Cache can prefetch in background and hide 

latency

● Arrays are usually good, pointers can be bad



  

Prefetchers 101

● Only work for larger amounts of data
– Need training

● Support strides and forward/backward stream
● Multiple streams supported, but only small 

number

9432 871 65

Stride



  

Kernel software prefetching

– Event loop

offset += pread(shared_fd, buffer, size, offset)

vs

– read(private_fd, buffer, size);



  

Hot loop model

● We understand everything about the hot loop
● Can use cache blocking and other tricks to 

optimize temporal locality for everything
– Compiler may even be able to do automatically

● Unfortunately a lot of software is not like that 



  

Library model

● Called by (random) other code which has own 
cache foot print

● Tradeoff: more computation or more 
caching/table lookup
– Tragedy of the commons: if all together use too 

much everyone suffers

● Non composable problem
– Everything depends on everything

Longer essay on the topic: http://halobates.de/blog/p/227



  

Cache friendly libraries

● May need to optimize for cache cold
– Minimize foot print

– But only if memory is not cheaper

● Cluster hot fields in data structures together.
● Support big and small versions

– Add knobs for foot print

– Could use automatic tuning



  

Cache coloring

● Caches can store addresses at specific 
multiplies of 64 only in limited number of 
positions



  

Inefficient use of cache

● Metadata always at same offset in data page
– Only uses fraction of the cache for pointers

– Can use separate packed metadata instead

Page Page

0: Pointer 0: Pointer0: Pointer 0: Pointer

Page Page

Next
Data

Next
Data



  

How to find cache issues

● First check TopDown Memory Bound
● Count cache misses

– perf stat -e cache-references,cache-misses ...

● Sample L3 cache misses:
– ocperf.py record -e \ 

mem_load_uops_l3_miss_retired.local_dram:pp ...

● Sample addresses

– perf mem record …

http://github.com/andikleen/pmu-tools
for ocperf

http://github.com/andikleen/pmu-tools


  

Automated icache tuning

● Some cache problems (like instruction cache) can 
be automatically optimized
– Indicated by FrontendBound in TopDown

– Split hot and cold code using compiler profile feedback

– Can be done automatically from profiles without 
instrumentation

http://github.com/google/autofdo with gcc 5.x+ base autofdo pgo
0.94
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1.1

1.12

gcc 5 compile performance
with profile feedback

http://github.com/google/autofdo


  

Noisy neighbour problem

● Caches can be shared resources
● Other processes/threads/VMs cause slowdowns

● Co-locate processes with different characteristics
– For example low IPC and high IPC

● New hardware capabilities: 
– Cache QoS monitoring

– Cache QoS enforcement



  

L3 cache occupancy measurements

Measure L3 cache occupancy 
for a process/container/VM

Gives us the upper consumption 
and avoids co-placement 
problems

Requires Intel Xeon E5 v3 and 
Linux 4.1+
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Communication

● Communication happens when a core 
accesses a cache line written by another core

● Like message passing in a fast network



  

Finding Communication

● Check for TopDown Contested_Accesses

● Find with:

ocperf.py stat -e \ 
mem_load_uops_l3_hit_retired.xsnp_hitm  ...

ocperf.py record -g -e \ 
mem_load_uops_l3_hit_retired.xsnp_hitm:pp …

– Or similar event name



 SMT thread<->other thread
 Really fast

 Core<->other Core in socket
 Other socket

 Latency depends on home address
 Possibly multiple hops

Tool to find latencies:
Intel Latency Checker

http://www.intel.com/software/mlc

Latency levels
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Cache2Cache Ratios



Cache queueing effects

● Cache communication is message passing
– Has ordering requirements

● Can cause conflicts and queue delays
– Gets worse with more and more cores

threads1 2 3 4 5 6 7 8 16 24 32 40 48 56 64 72 80 88
0

500

1000

1500

2000

2500

3000

3500

Time to do 250k increments on shared counter



Cache messaging optimizations

● Avoid unnecessary round trips
● Avoid false sharing
● Prefer nearby thread/core/socket
● Design for load, use backoffs
● Avoid thundering herds



Example

 global_flag = true;

 vs

 if (!global_flag)
 global_flag = true;



  

Classic Lock optimization

● Start with big lock per subsystem
● Push down to fine grained data objects to lower 

contention 
● End goal: lock per cache line?



  

Lock overhead

● Locks have overhead even when cache line is 
not contended
– Can depend on nearby operations (sometimes slow)

– Can be 3 orders of magnitude delta even when not 
contended

● Too many locks can be costly
– “Locks as red tape”



  

Another problem with small locks:



  

Lock region size versus work

Lock acquisition needs to amortize communication

Requires doing enough work inside lock



  

Lock stability

● Short lock regions can be instable
– Small timing variations can cause big performance 

changes

– Due to timing and queueing effects on the locks and 
data

● Rule of thumb: critical section at least 200us for 
stable behavior
– That is a lot of instructions!

In depth paper:
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/xeon-lock-scaling-
analysis-paper.pdf



  

Library design for lock batching

● Design interfaces to process multiple 
operations in the same call
– Allows doing more work in lock regions

– Improves temporal locality



  

Lock elision

● Can use hardware transactional memory 
support with TSX to do lock elision

● Use coarse lock and let the hardware figure it 
out

● Lock cache line stays shared
– Only uses real lock on real conflict

– Still need to minimize common data conflicts

Available on Intel Xeon v4 or Xeon E7 v3

http://www.intel.com/software/tsx

Measure:      perf stat -T ...
Find aborts:  perf record -e tx-aborts:pp ….



  

Microbenchmarks are difficult

● CPU Frequency can change
● Accurate timing is tricky
● Compilers are good at optimizing them away
● Caching effects are difficult to reproduce

– For example calling library with always the same 
input always hits cache

– Calling always with different input thrashes caches

– Both is unrealistic



  

Automatic micro benchmarking

● Using timed last branch records in Skylake 
CPUs

● Sample real workload and get cycle count of 32 
program blocks per sample

$ perf record -b …
$ perf report

Needs Linux perf 4.3+

Indepth articles:
http://lwn.net/Articles/680985/

http://lwn.net/Articles/680996

http://lwn.net/Articles/680985/


  

Tracing

● Using Processor Trace (PT)
– Hardware feature inBroadwell/Skylake

● Supported in Linux perf since Linux 4.1

– Fine grained execution trace with time stamps

$ perf record -e intel_pt// …
$ perf script --ns --itrace=cr \
-F time,event,callindent,addr,sym

For older kernels
http://github.com/andikleen/simple-pt



  

Assembler Tracing

● Using Processor Trace (PT)
● Timing cycle accurate to ~4 basic blocks on 

Skylake

$ perf record -e intel_pt// …
$ perf script --ns --itrace=i0ns \
-F time,pid,comm,ip,asm

Requires patched perf for disassembler 

Indepth article on PT: 
http://lwn.net/Articles/648154/



  

Summary

● Focus on critical bottlenecks
● Remember the order of magnitudes
● Cache communication is message passing
● Lock coarsely
● Measure properly

● http://github.com/andikleen/pmu-tools
● http://halobates.de

http://github.com/andikleen/pmu-tools
http://halobates.de/


  

Backup



  

Autotuning

● Add knobs to size tables and algorithms and 
use an auto tuner to find best trade off for 
whole program
– Can adapt to changing circumstances

– Use generic optimization frameworks

ATLAS: Automatically tuned linear algebra 
kernels

http://github.com/jansel/opentuner



  

Cache events

● Communication:

– mem_load_uops_l3_hit_retired.xsnp_hit

– mem_load_uops_l3_hit_retired.xsnp_hitm

– mem_load_uops_l3_hit_retired.xsnp_miss

● Locality:

– mem_load_uops_retired.l1_miss   / hit

– mem_load_uops_retired.l2_miss  / hit 

– mem_load_uops_retired.l3_miss / hit

● Can be counted or sampled with ocperf in pmu-tools



  

Linked lists versus ropes

A FEDB C

A    B   C   D D   E   F

VS
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