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TM programming models

 Transactional Memory programming is a new 
programming model
l This talk is not about TM programming models

 This presentation is about accelerating existing 
programs with locks, not about writing software 
for a new model
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Intel® Transactional Synchronization 
Extensions (Intel® TSX)

• Transactionally execute programmer-specified 
critical sections
– If successful, perform atomic commit
– If unsuccessful, rollback state/discard updates

• Focus on locking granularity optimizations
– Goal: Fine-grain performance at coarse-grain effort

Goes beyond LOCK latency improvements to
expose parallelism through lock elision
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Interfaces to identify critical sections

• HLE uses XACQUIRE and XRELEASE prefixes
– Legacy compatible hints, ignored on non TSX systems
– Don’t acquire lock, execute sections speculatively
– Hardware buffers loads and stores, checkpoints registers
– Hardware attempts to commit atomically without locks

• RTM uses the XBEGIN and XEND instructions
– Flexible interface
– Similar operation to HLE, except:
– Aborts transfer control to target specified by the XBEGIN operand
– Abort information returned in a register

• XTEST & XABORT
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Canonical elided execution

Lock: Free

Hash Table

Thread 1 Thread 2

Acquire Acquire

X

Critical 
section

Y

Critical 
section

Release
ReleaseTime

No serialization/communication if no data conflicts

Lock 
remains 
free
throughout
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Basic RTM elided lock

elided_lock(lock) {
    if (_xbegin() == _TXN_STARTED) {
        if (lock is free) 
              /* puts lock into read set */
              /* execute lock region */
              return;
        _xabort(0xff); 
        /* 0xff signals lock busy */
    }
    /* come here on abort */

    original locking code
}

elided_unlock(lock) {
    if (lock is free)
        _xend();   /* commit */
    else

        original unlocking code
}

 Simple wrapping code 
pattern

 Original lock code
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Basic lock elision enabling

• Change existing lock library for elision
• Application is unchanged

– With dynamic linking, no recompile needed

• Tune application for better elision success
– Typically small changes
– Optional, for better performance
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POSIX Pthread mutex interface

pthread_mutex_lock(&mutex);
…. critical section….
pthread_mutex_unlock(&mutex);
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Eliding in glibc pthread mutexes

 Glibc version that elides pthread mutexes
 Binary compatible. Any binary, that uses libc 

pthread locks today, can elide

 Currently supports pthread mutexes and pthread 
rwlocks
l Only basic types: timed, not adaptive or recursive or robust
 Elision can be controlled with environment variable 

(PTHREAD_MUTEX=…)
 Optional per lock annotation support in source
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Successfully elided locks are:

 Scalable
 Non blocking
 Fine grained
 Not contended
 Without lock cache line bouncing

l Can often dominate with small critical section
 Reader/Writer locks for free
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What if elision aborts

• Can happen due to unsupported instructions, 
context switches, data conflict, overflow
l See specification for full list

• When elision fails, lock will fall back to take the 
lock normally
l In fact, everyone speculating on that lock will fall back 

• Then, all the lock scaling problems appear
l But you have a fast path that works around it

•  But even abort may have non-intuitive benefit
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Tuning programs

 Generally avoid costly aborts

 In general, standard “cache line locality” tuning to 
avoid conflicts

 Typically improves scaling without elision, too
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Common abort problems

 False sharing
l Add padding, as needed

 Global statistic counters inside locks
l Remove or make per thread

 Re-writing unchanged shared data
l Add check for data the same

 Syscalls/IO
l Move out of lock or don’t elide lock

 x87 usage on 32bit
l Switch to SSE2
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malloc

• Older glibc dlmalloc has high number of conflicts

• Can be fixed with “—enable-experimental-malloc” 
when building glibc
l Default in glibc 2.15
l Alternatively tcmalloc et.al. are elision friendly

• Other allocations may have similar problems



Software and Services Group

lock_is_locked()

 Lock appears free inside RTM region
 Unlike HLE, where it appears locked

 Use _xabort() in lock_is_locked() to preserve 
semantics
 Correct answer in non-speculation

 Some programs use it widely in assert
 Guarding assert with _xtest() avoids abort

 Simple pattern that can be handled with semantic patches
 assert(is_locked(l)) -> assert_is_locked(l)
 assert_lock_is_locked(l) -> !_xtest() && assert(i_l(l))
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More is_locked semantics

• pthreads does not have is_locked()

• But is_locked() can be emulated with try_lock()
• Lock(l) if (!try_lock(l)) do_something
• This changes semantics even in glibc pthreads
• Not observed in the wild so far
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Linux kernel is very scalable, but…

• Futex hash locks
• VM: LRU, zone locks, 

mm_sem, page table, 
anon vma chains 

• Reclaims: i_mmap_mutex, 
tree_lock

• Slab locking
• Socket locks
• File system: i_mutex, 

journal locks

• Btrfs: extent cache, tree 
root lock

• RCU: write side locks
• Wait queue locks
• File locking
• Signal locks
• …
• The hot lock in your 

favorite workload
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Kernel elision implementation

• Basic concept: elide kernel locks to improve 
kernel scalability
l Benefits all applications

• Elide spinlocks/rwlocks/mutexes/rwsems/bit lock 
with elision wrapping pattern
l Semaphores would work too, but rarely used now

• “Opt-out” strategy currently
l Enable all locks with elision
l Opt out a few strategic ones that do poorly
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Paravirt ops for kernel elision

• Disabling/enabling interrupts abort 
• Common inside locks in the kernel

• Can use paravirt_ops patch mechanism
• Supports patching interrupt enabling/disabling

• Add _xtest() to cli/sti to avoid aborts
• Also using it for adding the elided ticket locks
• For other locks, using binary patching to 

enable/disable
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Kernel is_locked changes

• Not needed for correctness, BUG_ON aborts
l Most can be done using semantic patches
l No changes for calls outside lock

• BUG_ON(!spin_is_locked()) -> lockdep_assert_held()
• BUG_ON(!mutex_is_locked()) -> mutex_assert_held()
• … similar for other lock types

• Various uses are bugs (patches submitted)
• RCU debugging tests lock state and needs a few 

_xtest()s
l In general, lock debugging does not elide though
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References

• Specification http://software.intel.com/file/41604

• http://github.com/andikleen/glibc 
rtm-2.17 branch
Work in progress glibc extension for RTM elision

• Kernel patches coming soon

• Feedback to ak@linux.intel.com



Software and Services Group

Backup

http://software.intel.com/file/41604
http://github.com/andikleen/glibc
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Terminology

 Transaction
l Speculative state in CPU. Buffers memory operations

 Read-set / Write-set
l All cache lines read/written in a transaction

 Conflict
l Read-write conflict with other CPU (leads to abort)

 Abort
l Transaction rolls back side effects

 Commit
l Transaction state becomes atomically visible
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Annotating pthread locks

 Should be used only rarely
l And a lot to type...

 Initializers:
pthread_mutex_t lock = 
PTHREAD_TIMED_NONHLE_MUTEX_INITIALIZ
ER_NP;
 For allocated mutexes:
    pthread_mutexattr_t attr;
    pthread_mutexattr_init(&attr);
    pthread_mutexattr_settype(&attr,  PTHREAD_..._NONHLE_NP);
    pthread_mutex_init(&mutex, &attr);

PTHREAD_MUTEX_HLE_ADAPTIVE_NP Force elision

PTHREAD_MUTEX_TIMED_NONHLE_NP Force no elision
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Legal Information

• INFORMATION IN THIS DOCUMENT IS PROVIDED IN 
CONNECTION WITH INTEL® PRODUCTS.  EXCEPT AS 
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR 
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY 
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR 
IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL 
PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING 
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, 
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER 
INTELLECTUAL PROPERTY RIGHT.

• Intel may make changes to specifications, product descriptions, and 
plans at any time, without notice.  

• All dates provided are subject to change without notice.
• Intel is a trademark of Intel Corporation in the U.S. and other 

countries.
• *Other names and brands may be claimed as the property of others.
• Copyright © 2012, Intel Corporation. All rights are protected.
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