
Software and Services Group

Adding lock elision to Linux

Linux Plumbers Conference
Aug 2012

Andi Kleen
ak@linux.intel.com

1

Software and Services Group

TM programming models

 Transactional Memory programming is a new
programming model
l This talk is not about TM programming models

 This presentation is about accelerating existing
programs with locks, not about writing software
for a new model

Software and Services Group

Intel® Transactional Synchronization
Extensions (Intel® TSX)

• Transactionally execute programmer-specified
critical sections
– If successful, perform atomic commit
– If unsuccessful, rollback state/discard updates

• Focus on locking granularity optimizations
– Goal: Fine-grain performance at coarse-grain effort

Goes beyond LOCK latency improvements to
expose parallelism through lock elision

Software and Services Group

Interfaces to identify critical sections

• HLE uses XACQUIRE and XRELEASE prefixes
– Legacy compatible hints, ignored on non TSX systems
– Don’t acquire lock, execute sections speculatively
– Hardware buffers loads and stores, checkpoints registers
– Hardware attempts to commit atomically without locks

• RTM uses the XBEGIN and XEND instructions
– Flexible interface
– Similar operation to HLE, except:
– Aborts transfer control to target specified by the XBEGIN operand
– Abort information returned in a register

• XTEST & XABORT

4

Software and Services Group

Canonical elided execution

Lock: Free

Hash Table

Thread 1 Thread 2

Acquire Acquire

X

Critical
section

Y

Critical
section

Release
ReleaseTime

No serialization/communication if no data conflicts

Lock
remains
free
throughout

Software and Services Group

Basic RTM elided lock

elided_lock(lock) {
 if (_xbegin() == _TXN_STARTED) {
 if (lock is free)
 /* puts lock into read set */
 /* execute lock region */
 return;
 _xabort(0xff);
 /* 0xff signals lock busy */
 }
 /* come here on abort */

 original locking code
}

elided_unlock(lock) {
 if (lock is free)
 _xend(); /* commit */
 else

 original unlocking code
}

 Simple wrapping code
pattern

 Original lock code

Software and Services Group

Basic lock elision enabling

• Change existing lock library for elision
• Application is unchanged

– With dynamic linking, no recompile needed

• Tune application for better elision success
– Typically small changes
– Optional, for better performance

8

Software and Services Group

POSIX Pthread mutex interface

pthread_mutex_lock(&mutex);
…. critical section….
pthread_mutex_unlock(&mutex);

9

Software and Services Group

Eliding in glibc pthread mutexes

 Glibc version that elides pthread mutexes
 Binary compatible. Any binary, that uses libc

pthread locks today, can elide

 Currently supports pthread mutexes and pthread
rwlocks
l Only basic types: timed, not adaptive or recursive or robust
 Elision can be controlled with environment variable

(PTHREAD_MUTEX=…)
 Optional per lock annotation support in source

Software and Services Group

Successfully elided locks are:

 Scalable
 Non blocking
 Fine grained
 Not contended
 Without lock cache line bouncing

l Can often dominate with small critical section
 Reader/Writer locks for free

Software and Services Group

What if elision aborts

• Can happen due to unsupported instructions,
context switches, data conflict, overflow
l See specification for full list

• When elision fails, lock will fall back to take the
lock normally
l In fact, everyone speculating on that lock will fall back

• Then, all the lock scaling problems appear
l But you have a fast path that works around it

• But even abort may have non-intuitive benefit

Software and Services Group

Tuning programs

 Generally avoid costly aborts

 In general, standard “cache line locality” tuning to
avoid conflicts

 Typically improves scaling without elision, too

Software and Services Group

Common abort problems

 False sharing
l Add padding, as needed

 Global statistic counters inside locks
l Remove or make per thread

 Re-writing unchanged shared data
l Add check for data the same

 Syscalls/IO
l Move out of lock or don’t elide lock

 x87 usage on 32bit
l Switch to SSE2

Software and Services Group

malloc

• Older glibc dlmalloc has high number of conflicts

• Can be fixed with “—enable-experimental-malloc”
when building glibc
l Default in glibc 2.15
l Alternatively tcmalloc et.al. are elision friendly

• Other allocations may have similar problems

Software and Services Group

lock_is_locked()

 Lock appears free inside RTM region
 Unlike HLE, where it appears locked

 Use _xabort() in lock_is_locked() to preserve
semantics
 Correct answer in non-speculation

 Some programs use it widely in assert
 Guarding assert with _xtest() avoids abort

 Simple pattern that can be handled with semantic patches
 assert(is_locked(l)) -> assert_is_locked(l)
 assert_lock_is_locked(l) -> !_xtest() && assert(i_l(l))

Software and Services Group

More is_locked semantics

• pthreads does not have is_locked()

• But is_locked() can be emulated with try_lock()
• Lock(l) if (!try_lock(l)) do_something
• This changes semantics even in glibc pthreads
• Not observed in the wild so far

Software and Services Group

Linux kernel is very scalable, but…

• Futex hash locks
• VM: LRU, zone locks,

mm_sem, page table,
anon vma chains

• Reclaims: i_mmap_mutex,
tree_lock

• Slab locking
• Socket locks
• File system: i_mutex,

journal locks

• Btrfs: extent cache, tree
root lock

• RCU: write side locks
• Wait queue locks
• File locking
• Signal locks
• …
• The hot lock in your

favorite workload

Software and Services Group

Kernel elision implementation

• Basic concept: elide kernel locks to improve
kernel scalability
l Benefits all applications

• Elide spinlocks/rwlocks/mutexes/rwsems/bit lock
with elision wrapping pattern
l Semaphores would work too, but rarely used now

• “Opt-out” strategy currently
l Enable all locks with elision
l Opt out a few strategic ones that do poorly

Software and Services Group

Paravirt ops for kernel elision

• Disabling/enabling interrupts abort
• Common inside locks in the kernel

• Can use paravirt_ops patch mechanism
• Supports patching interrupt enabling/disabling

• Add _xtest() to cli/sti to avoid aborts
• Also using it for adding the elided ticket locks
• For other locks, using binary patching to

enable/disable

Software and Services Group

Kernel is_locked changes

• Not needed for correctness, BUG_ON aborts
l Most can be done using semantic patches
l No changes for calls outside lock

• BUG_ON(!spin_is_locked()) -> lockdep_assert_held()
• BUG_ON(!mutex_is_locked()) -> mutex_assert_held()
• … similar for other lock types

• Various uses are bugs (patches submitted)
• RCU debugging tests lock state and needs a few

_xtest()s
l In general, lock debugging does not elide though

Software and Services Group

References

• Specification http://software.intel.com/file/41604

• http://github.com/andikleen/glibc
rtm-2.17 branch
Work in progress glibc extension for RTM elision

• Kernel patches coming soon

• Feedback to ak@linux.intel.com

Software and Services Group

Backup

http://software.intel.com/file/41604
http://github.com/andikleen/glibc

Software and Services Group

Terminology

 Transaction
l Speculative state in CPU. Buffers memory operations

 Read-set / Write-set
l All cache lines read/written in a transaction

 Conflict
l Read-write conflict with other CPU (leads to abort)

 Abort
l Transaction rolls back side effects

 Commit
l Transaction state becomes atomically visible

Software and Services Group

Annotating pthread locks

 Should be used only rarely
l And a lot to type...

 Initializers:
pthread_mutex_t lock =
PTHREAD_TIMED_NONHLE_MUTEX_INITIALIZ
ER_NP;
 For allocated mutexes:
 pthread_mutexattr_t attr;
 pthread_mutexattr_init(&attr);
 pthread_mutexattr_settype(&attr, PTHREAD_..._NONHLE_NP);
 pthread_mutex_init(&mutex, &attr);

PTHREAD_MUTEX_HLE_ADAPTIVE_NP Force elision

PTHREAD_MUTEX_TIMED_NONHLE_NP Force no elision

Software and Services Group
26

Legal Information

• INFORMATION IN THIS DOCUMENT IS PROVIDED IN
CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

• Intel may make changes to specifications, product descriptions, and
plans at any time, without notice.

• All dates provided are subject to change without notice.
• Intel is a trademark of Intel Corporation in the U.S. and other

countries.
• *Other names and brands may be claimed as the property of others.
• Copyright © 2012, Intel Corporation. All rights are protected.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

